mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
108 lines
3.3 KiB
C++
108 lines
3.3 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/function/tile.h"
|
|
#include "fastdeploy/function/eigen.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace function {
|
|
|
|
template <typename T, int Rank>
|
|
void TileFunctor(const FDTensor& x,
|
|
const std::vector<int64_t>& origin_repeat_times,
|
|
FDTensor* out) {
|
|
auto x_shape = x.Shape();
|
|
auto repeat_times = origin_repeat_times;
|
|
for (size_t i = 0; i < repeat_times.size(); ++i) {
|
|
FDASSERT(repeat_times[i] > 0,
|
|
"All elements of the input 'repeat_times' "
|
|
"for tile op must be positive integers, but "
|
|
"the value received is %d.",
|
|
repeat_times[i]);
|
|
}
|
|
if (repeat_times.size() < x_shape.size()) {
|
|
int diff = x_shape.size() - repeat_times.size();
|
|
repeat_times.insert(repeat_times.begin(), diff, 1);
|
|
} else {
|
|
int diff = repeat_times.size() - x_shape.size();
|
|
x_shape.insert(x_shape.begin(), diff, 1);
|
|
}
|
|
FDASSERT(repeat_times.size() == x_shape.size(),
|
|
"The rank (%d) of the input 'x' and the rank (%d) of the input "
|
|
"'repeat_times' for tile op must match after promotion.",
|
|
x_shape.size(), repeat_times.size());
|
|
|
|
if (Rank == 0) {
|
|
// Deep copy
|
|
*out = x;
|
|
return;
|
|
}
|
|
|
|
Eigen::DSizes<Eigen::DenseIndex, Rank> bcast_dims;
|
|
for (size_t i = 0; i < repeat_times.size(); ++i) {
|
|
bcast_dims[i] = repeat_times[i];
|
|
}
|
|
|
|
std::vector<int64_t> out_shape(x_shape);
|
|
for (size_t i = 0; i < repeat_times.size(); ++i) {
|
|
out_shape[i] *= repeat_times[i];
|
|
}
|
|
|
|
out->Allocate(out_shape, x.Dtype());
|
|
auto eigen_x = EigenTensor<T, Rank>::From(x, x_shape);
|
|
auto eigen_out = EigenTensor<T, Rank>::From(*out, out_shape);
|
|
|
|
const auto& dev = *EigenDeviceWrapper::GetInstance()->GetDevice();
|
|
eigen_out.device(dev) = eigen_x.broadcast(bcast_dims);
|
|
}
|
|
|
|
template <typename T>
|
|
void TileKernel(const FDTensor& x, const std::vector<int64_t>& repeat_times,
|
|
FDTensor* out) {
|
|
auto rank = x.Shape().size();
|
|
auto repeat_times_size = repeat_times.size();
|
|
rank = (std::max)(rank, repeat_times_size);
|
|
switch (rank) {
|
|
case 0:
|
|
*out = x;
|
|
break;
|
|
case 1:
|
|
TileFunctor<T, 1>(x, repeat_times, out);
|
|
break;
|
|
case 2:
|
|
TileFunctor<T, 2>(x, repeat_times, out);
|
|
break;
|
|
case 3:
|
|
TileFunctor<T, 3>(x, repeat_times, out);
|
|
break;
|
|
case 4:
|
|
TileFunctor<T, 4>(x, repeat_times, out);
|
|
break;
|
|
case 5:
|
|
TileFunctor<T, 5>(x, repeat_times, out);
|
|
break;
|
|
case 6:
|
|
TileFunctor<T, 6>(x, repeat_times, out);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void Tile(const FDTensor& x, const std::vector<int64_t>& repeat_times,
|
|
FDTensor* out) {
|
|
FD_VISIT_ALL_TYPES(x.dtype, "TileKernel",
|
|
([&] { TileKernel<data_t>(x, repeat_times, out); }));
|
|
}
|
|
|
|
} // namespace function
|
|
} // namespace fastdeploy
|