mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			72 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			72 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2020-2023, NVIDIA CORPORATION.  All rights reserved.
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the "License");
 | |
|  * you may not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  *     http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an "AS IS" BASIS,
 | |
|  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <cstddef>
 | |
| #include <stdint.h>
 | |
| #include <vector>
 | |
| 
 | |
| namespace kernels
 | |
| {
 | |
| namespace cutlass_kernels
 | |
| {
 | |
| 
 | |
| enum class QuantType
 | |
| {
 | |
|     W8_A16,
 | |
|     W4_A16,
 | |
|     W4_AFP8
 | |
| };
 | |
| 
 | |
| constexpr int get_weight_quant_bits(QuantType quant_type)
 | |
| {
 | |
|     switch (quant_type)
 | |
|     {
 | |
|     case QuantType::W8_A16: return 8;
 | |
|     case QuantType::W4_A16: return 4;
 | |
|     case QuantType::W4_AFP8: return 4;
 | |
|     default: PADDLE_THROW("Invalid quant_type"); return -1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Shapes here can be 2 or 3D. 2-D shapes are [num_rows, num_cols]
 | |
| // 3-D shapes are [num_experts, num_rows, num_cols]
 | |
| void permute_B_rows_for_mixed_gemm(int8_t* permuted_quantized_tensor, int8_t const* quantized_tensor,
 | |
|     std::vector<size_t> const& shape, QuantType quant_type, const int64_t arch_version);
 | |
| 
 | |
| void subbyte_transpose(int8_t* transposed_quantized_tensor, int8_t const* quantized_tensor,
 | |
|     std::vector<size_t> const& shape, QuantType quant_type);
 | |
| 
 | |
| void add_bias_and_interleave_quantized_tensor_inplace(int8_t* tensor, const size_t num_elts, QuantType quant_type);
 | |
| 
 | |
| void preprocess_weights_for_mixed_gemm(int8_t* preprocessed_quantized_weight, int8_t const* row_major_quantized_weight,
 | |
|     std::vector<size_t> const& shape, QuantType quant_type, bool force_interleave = false);
 | |
| 
 | |
| template <typename ComputeType, typename WeightType>
 | |
| void symmetric_quantize(int8_t* processed_quantized_weight, ComputeType* scale_ptr, WeightType const* input_weight_ptr,
 | |
|     std::vector<size_t> const& shape, QuantType quant_type, bool force_interleave);
 | |
| 
 | |
| // This is exposed so that we can write tests that use the processed weights for CUTLASS but the unprocessed weight
 | |
| // to implement a simple reference implementation.
 | |
| template <typename ComputeType, typename WeightType>
 | |
| void symmetric_quantize(int8_t* processed_quantized_weight, int8_t* unprocessed_quantized_weight,
 | |
|     ComputeType* scale_ptr, WeightType const* input_weight_ptr, std::vector<size_t> const& shape, QuantType quant_type,
 | |
|     bool force_interleave);
 | |
| 
 | |
| } // namespace cutlass_kernels
 | |
| } // namespace kernels
 | 
