mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 01:22:59 +08:00

* Add notes for tensors * Optimize some apis * move some warnings * Support build with Paddle2ONNX * Add protobuf support * Fix compile on mac * add clearn package script * Add paddle2onnx code * remove submodule * Add onnx ocde * remove softlink * add onnx code * fix error * Add cmake file * fix patchelf * update paddle2onnx * Delete .gitmodules --------- Co-authored-by: PaddleCI <paddle_ci@example.com> Co-authored-by: pangyoki <pangyoki@126.com> Co-authored-by: jiangjiajun <jiangjiajun@baidu.lcom>
77 lines
3.1 KiB
C++
77 lines
3.1 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle2onnx/mapper/tensor/range.h"
|
|
|
|
namespace paddle2onnx {
|
|
REGISTER_MAPPER(range, RangeMapper)
|
|
|
|
void RangeMapper::Opset11() {
|
|
auto start_info = GetInput("Start");
|
|
auto end_info = GetInput("End");
|
|
auto step_info = GetInput("Step");
|
|
auto out_info = GetOutput("Out");
|
|
int32_t out_dtype = -1;
|
|
// TODO(jiangjiajun) cast for constant is an eleminable operation
|
|
std::vector<std::string> aligned_inputs = helper_->DtypeAlignment(
|
|
{start_info[0], end_info[0], step_info[0]}, &out_dtype);
|
|
std::vector<int64_t> empty_axes;
|
|
|
|
// // Trick for tensorrt
|
|
// if (out_dtype == P2ODataType::INT32 || out_dtype == P2ODataType::INT64 ||
|
|
// true) {
|
|
// if (start_info[0].Rank() != 1) {
|
|
// aligned_inputs[0] = helper_->Reshape(aligned_inputs[0], {-1});
|
|
// }
|
|
// if (end_info[0].Rank() != 1) {
|
|
// aligned_inputs[1] = helper_->Reshape(aligned_inputs[1], {-1});
|
|
// }
|
|
// if (step_info[0].Rank() != 1) {
|
|
// aligned_inputs[2] = helper_->Reshape(aligned_inputs[2], {-1});
|
|
// }
|
|
// auto length = helper_->MakeNode("Sub", {aligned_inputs[1],
|
|
// aligned_inputs[0]})->output(0);
|
|
// length = helper_->AutoCast(length, out_dtype, P2ODataType::INT64);
|
|
// auto one = helper_->Constant({1}, GetOnnxDtype(out_dtype), int64_t(1));
|
|
// auto expaned_one = helper_->MakeNode("Expand", {one,
|
|
// length})->output(0); auto axis = helper_->Constant({},
|
|
// ONNX_NAMESPACE::TensorProto::INT64, int64_t(0)); auto cumsumed_data =
|
|
// helper_->MakeNode("CumSum", {expaned_one, axis})->output(0);
|
|
// cumsumed_data = helper_->MakeNode("Sub", {cumsumed_data,
|
|
// one})->output(0);
|
|
//
|
|
// auto zero = helper_->Constant({1}, ONNX_NAMESPACE::TensorProto::INT64,
|
|
// int64_t(0));
|
|
// auto new_step = helper_->AutoCast(aligned_inputs[2], step_info[0].dtype,
|
|
// P2ODataType::INT64);
|
|
// helper_->MakeNode("Slice", {cumsumed_data, zero, length, zero,
|
|
// new_step}, {out_info[0].name}); return;
|
|
// }
|
|
|
|
// TODO(jiangjiajun) squeeze for constant is an eleminable operation
|
|
if (start_info[0].shape.size() > 0) {
|
|
aligned_inputs[0] = helper_->Squeeze(aligned_inputs[0], empty_axes);
|
|
}
|
|
if (end_info[0].shape.size() > 0) {
|
|
aligned_inputs[1] = helper_->Squeeze(aligned_inputs[1], empty_axes);
|
|
}
|
|
if (step_info[0].shape.size() > 0) {
|
|
aligned_inputs[2] = helper_->Squeeze(aligned_inputs[2], empty_axes);
|
|
}
|
|
auto out = helper_->MakeNode("Range", aligned_inputs)->output(0);
|
|
helper_->AutoCast(out, out_info[0].name, out_dtype, out_info[0].dtype);
|
|
}
|
|
|
|
} // namespace paddle2onnx
|