Files
FastDeploy/paddle2onnx/legacy/op_mapper/custom_paddle_op/box_clip.py
Jason 6343b0db47 [Build] Support build with source code of Paddle2ONNX (#1559)
* Add notes for tensors

* Optimize some apis

* move some warnings

* Support build with Paddle2ONNX

* Add protobuf support

* Fix compile on mac

* add clearn package script

* Add paddle2onnx code

* remove submodule

* Add onnx ocde

* remove softlink

* add onnx code

* fix error

* Add cmake file

* fix patchelf

* update paddle2onnx

* Delete .gitmodules

---------

Co-authored-by: PaddleCI <paddle_ci@example.com>
Co-authored-by: pangyoki <pangyoki@126.com>
Co-authored-by: jiangjiajun <jiangjiajun@baidu.lcom>
2023-03-17 10:03:22 +08:00

57 lines
2.3 KiB
Python
Executable File

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import numpy as np
import paddle
from paddle.fluid import layers
from paddle2onnx.legacy.op_mapper import CustomPaddleOp, register_custom_paddle_op
from paddle2onnx.legacy.op_mapper import OpMapper as op_mapper
from paddle2onnx.legacy.op_mapper import mapper_helper
class BoxClip(CustomPaddleOp):
def __init__(self, node, **kw):
super(BoxClip, self).__init__(node)
def forward(self):
input = self.input('Input', 0)
im_info = self.input('ImInfo', 0)
im_info = paddle.reshape(im_info, shape=[3])
h, w, s = paddle.tensor.split(im_info, axis=0, num_or_sections=3)
tensor_one = paddle.full(shape=[1], dtype='float32', fill_value=1.0)
tensor_zero = paddle.full(shape=[1], dtype='float32', fill_value=0.0)
h = paddle.subtract(h, tensor_one)
w = paddle.subtract(w, tensor_one)
xmin, ymin, xmax, ymax = paddle.tensor.split(
input, axis=-1, num_or_sections=4)
xmin = paddle.maximum(paddle.minimum(xmin, w), tensor_zero)
ymin = paddle.maximum(paddle.minimum(ymin, h), tensor_zero)
xmax = paddle.maximum(paddle.minimum(xmax, w), tensor_zero)
ymax = paddle.maximum(paddle.minimum(ymax, h), tensor_zero)
cliped_box = paddle.concat([xmin, ymin, xmax, ymax], axis=-1)
return {'Output': [cliped_box]}
@op_mapper('box_clip')
class Boxclip:
@classmethod
def opset_1(cls, graph, node, **kw):
node = graph.make_node(
'box_clip',
inputs=node.input('Input')+node.input('ImInfo'),
outputs=node.output('Output'),
domain = 'custom')
register_custom_paddle_op('box_clip', BoxClip)