mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* Refactor PaddleSeg with preprocessor && postprocessor * Fix bugs * Delete redundancy code * Modify by comments * Refactor according to comments * Add batch evaluation * Add single test script * Add ppliteseg single test script && fix eval(raise) error * fix bug * Fix evaluation segmentation.py batch predict * Fix segmentation evaluation bug * Fix evaluation segmentation bugs * Update segmentation result docs * Update old predict api and DisableNormalizeAndPermute * Update resize segmentation label map with cv::INTER_NEAREST * Add Model Clone function for PaddleClas && PaddleDet && PaddleSeg * Add multi thread demo * Add python model clone function * Add multi thread python && C++ example * Fix bug * Update python && cpp multi_thread examples * Add cpp && python directory * Add README.md for examples * Delete redundant code * Create README_CN.md * Rename README_CN.md to README.md * Update README.md * Update README.md * Update VERSION_NUMBER * Update requirements.txt * Update README.md * update version in doc: * [Serving]Update Dockerfile (#1037) Update Dockerfile * Add license notice for RVM onnx model file (#1060) * [Model] Add GPL-3.0 license (#1065) Add GPL-3.0 license * PPOCR model support model clone * Update README.md * Update PPOCRv2 && PPOCRv3 clone code * Update PPOCR python __init__ * Add multi thread ocr example code * Update README.md * Update README.md * Update ResNet50_vd_infer multi process code * Add PPOCR multi process && thread example * Update README.md * Update README.md * Update multi-thread docs Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: leiqing <54695910+leiqing1@users.noreply.github.com> Co-authored-by: heliqi <1101791222@qq.com> Co-authored-by: WJJ1995 <wjjisloser@163.com>
178 lines
6.8 KiB
C++
Executable File
178 lines
6.8 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <thread>
|
|
#include "fastdeploy/vision.h"
|
|
#ifdef WIN32
|
|
const char sep = '\\';
|
|
#else
|
|
const char sep = '/';
|
|
#endif
|
|
|
|
void Predict(fastdeploy::pipeline::PPOCRv3 *model, int thread_id, const std::vector<std::string>& images) {
|
|
for (auto const &image_file : images) {
|
|
auto im = cv::imread(image_file);
|
|
|
|
fastdeploy::vision::OCRResult res;
|
|
if (!model->Predict(im, &res)) {
|
|
std::cerr << "Failed to predict." << std::endl;
|
|
return;
|
|
}
|
|
|
|
// print res
|
|
std::cout << "Thread Id: " << thread_id << std::endl;
|
|
std::cout << res.Str() << std::endl;
|
|
}
|
|
}
|
|
|
|
void GetImageList(std::vector<std::vector<std::string>>* image_list, const std::string& image_file_path, int thread_num){
|
|
std::vector<cv::String> images;
|
|
cv::glob(image_file_path, images, false);
|
|
// number of image files in images folder
|
|
size_t count = images.size();
|
|
size_t num = count / thread_num;
|
|
for (int i = 0; i < thread_num; i++) {
|
|
std::vector<std::string> temp_list;
|
|
if (i == thread_num - 1) {
|
|
for (size_t j = i*num; j < count; j++){
|
|
temp_list.push_back(images[j]);
|
|
}
|
|
} else {
|
|
for (size_t j = 0; j < num; j++){
|
|
temp_list.push_back(images[i * num + j]);
|
|
}
|
|
}
|
|
(*image_list)[i] = temp_list;
|
|
}
|
|
}
|
|
|
|
void InitAndInfer(const std::string& det_model_dir, const std::string& cls_model_dir, const std::string& rec_model_dir, const std::string& rec_label_file, const std::string& image_file_path, const fastdeploy::RuntimeOption& option, int thread_num) {
|
|
auto det_model_file = det_model_dir + sep + "inference.pdmodel";
|
|
auto det_params_file = det_model_dir + sep + "inference.pdiparams";
|
|
|
|
auto cls_model_file = cls_model_dir + sep + "inference.pdmodel";
|
|
auto cls_params_file = cls_model_dir + sep + "inference.pdiparams";
|
|
|
|
auto rec_model_file = rec_model_dir + sep + "inference.pdmodel";
|
|
auto rec_params_file = rec_model_dir + sep + "inference.pdiparams";
|
|
|
|
auto det_option = option;
|
|
auto cls_option = option;
|
|
auto rec_option = option;
|
|
|
|
// The cls and rec model can inference a batch of images now.
|
|
// User could initialize the inference batch size and set them after create PP-OCR model.
|
|
int cls_batch_size = 1;
|
|
int rec_batch_size = 6;
|
|
|
|
// If use TRT backend, the dynamic shape will be set as follow.
|
|
// We recommend that users set the length and height of the detection model to a multiple of 32.
|
|
// We also recommend that users set the Trt input shape as follow.
|
|
det_option.SetTrtInputShape("x", {1, 3, 64,64}, {1, 3, 640, 640},
|
|
{1, 3, 960, 960});
|
|
cls_option.SetTrtInputShape("x", {1, 3, 48, 10}, {cls_batch_size, 3, 48, 320}, {cls_batch_size, 3, 48, 1024});
|
|
rec_option.SetTrtInputShape("x", {1, 3, 48, 10}, {rec_batch_size, 3, 48, 320},
|
|
{rec_batch_size, 3, 48, 2304});
|
|
|
|
// Users could save TRT cache file to disk as follow.
|
|
// det_option.SetTrtCacheFile(det_model_dir + sep + "det_trt_cache.trt");
|
|
// cls_option.SetTrtCacheFile(cls_model_dir + sep + "cls_trt_cache.trt");
|
|
// rec_option.SetTrtCacheFile(rec_model_dir + sep + "rec_trt_cache.trt");
|
|
|
|
auto det_model = fastdeploy::vision::ocr::DBDetector(det_model_file, det_params_file, det_option);
|
|
auto cls_model = fastdeploy::vision::ocr::Classifier(cls_model_file, cls_params_file, cls_option);
|
|
auto rec_model = fastdeploy::vision::ocr::Recognizer(rec_model_file, rec_params_file, rec_label_file, rec_option);
|
|
|
|
assert(det_model.Initialized());
|
|
assert(cls_model.Initialized());
|
|
assert(rec_model.Initialized());
|
|
|
|
// The classification model is optional, so the PP-OCR can also be connected in series as follows
|
|
// auto ppocr_v3 = fastdeploy::pipeline::PPOCRv3(&det_model, &rec_model);
|
|
auto ppocr_v3 = fastdeploy::pipeline::PPOCRv3(&det_model, &cls_model, &rec_model);
|
|
|
|
// Set inference batch size for cls model and rec model, the value could be -1 and 1 to positive infinity.
|
|
// When inference batch size is set to -1, it means that the inference batch size
|
|
// of the cls and rec models will be the same as the number of boxes detected by the det model.
|
|
ppocr_v3.SetClsBatchSize(cls_batch_size);
|
|
ppocr_v3.SetRecBatchSize(rec_batch_size);
|
|
|
|
if(!ppocr_v3.Initialized()){
|
|
std::cerr << "Failed to initialize PP-OCR." << std::endl;
|
|
return;
|
|
}
|
|
|
|
|
|
std::vector<decltype(ppocr_v3.Clone())> models;
|
|
for (int i = 0; i < thread_num; ++i) {
|
|
models.emplace_back(std::move(ppocr_v3.Clone()));
|
|
}
|
|
|
|
std::vector<std::vector<std::string>> image_list(thread_num);
|
|
GetImageList(&image_list, image_file_path, thread_num);
|
|
|
|
std::vector<std::thread> threads;
|
|
for (int i = 0; i < thread_num; ++i) {
|
|
threads.emplace_back(Predict, models[i].get(), i, image_list[i]);
|
|
}
|
|
|
|
for (int i = 0; i < thread_num; ++i) {
|
|
threads[i].join();
|
|
}
|
|
}
|
|
|
|
int main(int argc, char* argv[]) {
|
|
if (argc < 7) {
|
|
std::cout << "Usage: infer_demo path/to/det_model path/to/cls_model "
|
|
"path/to/rec_model path/to/rec_label_file path/to/image "
|
|
"run_option thread_num,"
|
|
"e.g ./infer_demo ./ch_PP-OCRv3_det_infer "
|
|
"./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer "
|
|
"./ppocr_keys_v1.txt ./12.jpg 0 3"
|
|
<< std::endl;
|
|
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
|
"with gpu; 2: run with gpu and use tensorrt backend; 3: run with gpu and use Paddle-TRT; 4: run with kunlunxin."
|
|
<< std::endl;
|
|
return -1;
|
|
}
|
|
|
|
fastdeploy::RuntimeOption option;
|
|
int flag = std::atoi(argv[6]);
|
|
|
|
if (flag == 0) {
|
|
option.UseCpu();
|
|
} else if (flag == 1) {
|
|
option.UseGpu();
|
|
} else if (flag == 2) {
|
|
option.UseGpu();
|
|
option.UseTrtBackend();
|
|
} else if (flag == 3) {
|
|
option.UseGpu();
|
|
option.UseTrtBackend();
|
|
option.EnablePaddleTrtCollectShape();
|
|
option.EnablePaddleToTrt();
|
|
} else if (flag == 4) {
|
|
option.UseKunlunXin();
|
|
}
|
|
|
|
std::string det_model_dir = argv[1];
|
|
std::string cls_model_dir = argv[2];
|
|
std::string rec_model_dir = argv[3];
|
|
std::string rec_label_file = argv[4];
|
|
std::string image_file_path = argv[5];
|
|
int thread_num = std::atoi(argv[7]);
|
|
InitAndInfer(det_model_dir, cls_model_dir, rec_model_dir, rec_label_file, image_file_path, option, thread_num);
|
|
return 0;
|
|
}
|