Files
FastDeploy/fastdeploy/vision/common/processors/utils.cc
Wang Xinyu cb7c8a07d4 [CVCUDA] PaddleDetection preprocessor support CV-CUDA (#1493)
* ppdet preproc use manager

* pad_to_size chw opencv

* pad_to_size chw flycv

* fix pad_to_size flycv

* add warning message

* cvcuda convert cubic to linear, padToSize cvcuda

* stridedpad cvcuda

* fix flycv include

* fix flycv include

* fix flycv build

* cast cvcuda

* fix pybind

* fix normalize permute cuda

* base processor move funcs to cc

* Update pad_to_size.cc
2023-03-10 12:43:57 +08:00

281 lines
9.6 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/utils/utils.h"
#include "fastdeploy/vision/common/processors/utils.h"
namespace fastdeploy {
namespace vision {
FDDataType OpenCVDataTypeToFD(int type) {
type = type % 8;
if (type == 0) {
return FDDataType::UINT8;
} else if (type == 1) {
return FDDataType::INT8;
} else if (type == 2) {
FDASSERT(false,
"While calling OpenCVDataTypeToFD(), get UINT16 type which is not "
"supported now.");
} else if (type == 3) {
return FDDataType::INT16;
} else if (type == 4) {
return FDDataType::INT32;
} else if (type == 5) {
return FDDataType::FP32;
} else if (type == 6) {
return FDDataType::FP64;
} else {
FDASSERT(false,
"While calling OpenCVDataTypeToFD(), get type = %d, which is not "
"expected.",
type);
}
}
int CreateOpenCVDataType(FDDataType type, int channel) {
FDASSERT(channel == 1 || channel == 3 || channel == 4,
"Only support channel be 1/3/4 in OpenCV.");
if (type == FDDataType::UINT8) {
if (channel == 1) {
return CV_8UC1;
} else if (channel == 3) {
return CV_8UC3;
} else {
return CV_8UC4;
}
} else if (type == FDDataType::FP32) {
if (channel == 1) {
return CV_32FC1;
} else if (channel == 3) {
return CV_32FC3;
} else {
return CV_32FC4;
}
}
FDASSERT(false, "Data type of %s is not supported.", Str(type).c_str());
return CV_32FC3;
}
#ifdef ENABLE_FLYCV
FDDataType FlyCVDataTypeToFD(fcv::FCVImageType type) {
if (type == fcv::FCVImageType::GRAY_U8) {
return FDDataType::UINT8;
} else if (type == fcv::FCVImageType::PKG_BGR_U8) {
return FDDataType::UINT8;
} else if (type == fcv::FCVImageType::PKG_RGB_U8) {
return FDDataType::UINT8;
} else if (type == fcv::FCVImageType::PKG_BGR_U8) {
return FDDataType::UINT8;
} else if (type == fcv::FCVImageType::PKG_RGB_U8) {
return FDDataType::UINT8;
} else if (type == fcv::FCVImageType::PLA_BGR_U8) {
return FDDataType::UINT8;
} else if (type == fcv::FCVImageType::PLA_RGB_U8) {
return FDDataType::UINT8;
} else if (type == fcv::FCVImageType::PLA_BGRA_U8) {
return FDDataType::UINT8;
} else if (type == fcv::FCVImageType::PLA_RGBA_U8) {
return FDDataType::UINT8;
} else if (type == fcv::FCVImageType::PLA_BGR_F32) {
return FDDataType::FP32;
} else if (type == fcv::FCVImageType::PLA_RGB_F32) {
return FDDataType::FP32;
} else if (type == fcv::FCVImageType::PLA_BGRA_F32) {
return FDDataType::FP32;
} else if (type == fcv::FCVImageType::PLA_RGBA_F32) {
return FDDataType::FP32;
} else if (type == fcv::FCVImageType::PKG_BGRA_U8) {
return FDDataType::UINT8;
} else if (type == fcv::FCVImageType::PKG_RGBA_U8) {
return FDDataType::UINT8;
} else if (type == fcv::FCVImageType::PKG_BGRA_U8) {
return FDDataType::UINT8;
} else if (type == fcv::FCVImageType::PKG_RGBA_U8) {
return FDDataType::UINT8;
} else if (type == fcv::FCVImageType::PKG_BGR565_U8) {
return FDDataType::UINT8;
} else if (type == fcv::FCVImageType::PKG_RGB565_U8) {
return FDDataType::UINT8;
} else if (type == fcv::FCVImageType::GRAY_S32) {
return FDDataType::INT32;
} else if (type == fcv::FCVImageType::GRAY_F32) {
return FDDataType::FP32;
} else if (type == fcv::FCVImageType::PKG_BGR_F32) {
return FDDataType::FP32;
} else if (type == fcv::FCVImageType::PKG_RGB_F32) {
return FDDataType::FP32;
} else if (type == fcv::FCVImageType::PKG_BGR_F32) {
return FDDataType::FP32;
} else if (type == fcv::FCVImageType::PKG_RGB_F32) {
return FDDataType::FP32;
} else if (type == fcv::FCVImageType::PKG_BGRA_F32) {
return FDDataType::FP32;
} else if (type == fcv::FCVImageType::PKG_RGBA_F32) {
return FDDataType::FP32;
} else if (type == fcv::FCVImageType::PKG_BGRA_F32) {
return FDDataType::FP32;
} else if (type == fcv::FCVImageType::PKG_RGBA_F32) {
return FDDataType::FP32;
} else if (type == fcv::FCVImageType::GRAY_F64) {
return FDDataType::FP64;
}
FDASSERT(false, "While calling FlyCVDataTypeToFD(), get unexpected type:%d.",
int(type));
return FDDataType::UNKNOWN1;
}
fcv::FCVImageType CreateFlyCVDataType(FDDataType type, int channel) {
FDASSERT(channel == 1 || channel == 3 || channel == 4,
"Only support channel be 1/3/4 in FlyCV.");
if (type == FDDataType::UINT8) {
if (channel == 1) {
return fcv::FCVImageType::GRAY_U8;
} else if (channel == 3) {
return fcv::FCVImageType::PKG_BGR_U8;
} else {
return fcv::FCVImageType::PKG_BGRA_U8;
}
} else if (type == FDDataType::FP32) {
if (channel == 1) {
return fcv::FCVImageType::GRAY_F32;
} else if (channel == 3) {
return fcv::FCVImageType::PKG_BGR_F32;
} else {
return fcv::FCVImageType::PKG_BGRA_F32;
}
}
FDASSERT(false, "Data type of %s is not supported.", Str(type).c_str());
return fcv::FCVImageType::PKG_BGR_F32;
}
fcv::Mat ConvertOpenCVMatToFlyCV(cv::Mat& im) {
int type = im.type() % 8;
// 0: uint8; 5: float32; 6: float64
if (type != 0 && type != 5 && type != 6) {
FDASSERT(false, "Only support type of uint8/float/double, but now it's %d.",
im.type());
}
auto fcv_type =
CreateFlyCVDataType(OpenCVDataTypeToFD(im.type()), im.channels());
return fcv::Mat(im.cols, im.rows, fcv_type, im.ptr()); // reference only
}
cv::Mat ConvertFlyCVMatToOpenCV(fcv::Mat& fim) {
auto fd_dtype = FlyCVDataTypeToFD(fim.type());
if (fd_dtype != FDDataType::UINT8 && fd_dtype != FDDataType::FP32 &&
fd_dtype != FDDataType::FP64) {
FDASSERT(false, "Only support type of uint8/float/double, but now it's %s.",
Str(fd_dtype).c_str());
}
auto ocv_type = CreateOpenCVDataType(fd_dtype, fim.channels());
return cv::Mat(fim.height(), fim.width(), ocv_type,
fim.data()); // reference only
}
#endif
cv::Mat CreateZeroCopyOpenCVMatFromBuffer(int height, int width, int channels,
FDDataType type, void* data) {
cv::Mat ocv_mat;
switch (type) {
case FDDataType::UINT8:
ocv_mat = cv::Mat(height, width, CV_8UC(channels), data);
break;
case FDDataType::INT8:
ocv_mat = cv::Mat(height, width, CV_8SC(channels), data);
break;
case FDDataType::INT16:
ocv_mat = cv::Mat(height, width, CV_16SC(channels), data);
break;
case FDDataType::INT32:
ocv_mat = cv::Mat(height, width, CV_32SC(channels), data);
break;
case FDDataType::FP32:
ocv_mat = cv::Mat(height, width, CV_32FC(channels), data);
break;
case FDDataType::FP64:
ocv_mat = cv::Mat(height, width, CV_64FC(channels), data);
break;
default:
FDASSERT(false,
"Tensor type %d is not supported While calling "
"CreateZeroCopyOpenCVMat.",
type);
break;
}
return ocv_mat;
}
cv::Mat CreateZeroCopyOpenCVMatFromTensor(const FDTensor& tensor,
Layout layout) {
FDASSERT(tensor.shape.size() == 3,
"When create OepnCV Mat from tensor,"
"tensor shape should be 3-Dim");
FDDataType type = tensor.dtype;
int height = static_cast<int>(tensor.shape[0]);
int width = static_cast<int>(tensor.shape[1]);
int channels = static_cast<int>(tensor.shape[2]);
if (layout == Layout::CHW) {
channels = static_cast<int>(tensor.shape[0]);
height = static_cast<int>(tensor.shape[1]);
width = static_cast<int>(tensor.shape[2]);
}
return CreateZeroCopyOpenCVMatFromBuffer(height, width, channels, type,
const_cast<void*>(tensor.CpuData()));
}
#ifdef ENABLE_FLYCV
fcv::Mat CreateZeroCopyFlyCVMatFromBuffer(int height, int width, int channels,
FDDataType type, void* data) {
fcv::Mat fcv_mat;
auto fcv_type = CreateFlyCVDataType(type, channels);
switch (type) {
case FDDataType::UINT8:
fcv_mat = fcv::Mat(width, height, fcv_type, data);
break;
case FDDataType::FP32:
fcv_mat = fcv::Mat(width, height, fcv_type, data);
break;
case FDDataType::FP64:
fcv_mat = fcv::Mat(width, height, fcv_type, data);
break;
default:
FDASSERT(false,
"Tensor type %d is not supported While calling "
"CreateZeroCopyFlyCVMat.",
type);
break;
}
return fcv_mat;
}
fcv::Mat CreateZeroCopyFlyCVMatFromTensor(const FDTensor& tensor) {
// TODO(qiuyanjun): Should add a Layout checking. Now, we
// assume that the input tensor is already in Layout::HWC.
FDASSERT(tensor.shape.size() == 3,
"When create FlyCV Mat from tensor,"
"tensor shape should be 3-Dim, HWC layout");
FDDataType type = tensor.dtype;
int height = static_cast<int>(tensor.shape[0]);
int width = static_cast<int>(tensor.shape[1]);
int channels = static_cast<int>(tensor.shape[2]);
return CreateZeroCopyFlyCVMatFromBuffer(height, width, channels, type,
const_cast<void*>(tensor.Data()));
}
#endif
} // namespace vision
} // namespace fastdeploy