Files
FastDeploy/fastdeploy/vision/common/processors/stride_pad.cc
guxukai 631f94d276 [CVCUDA] Update CV-CUDA to v0.2.1, add vision processor C++ tutorial (#1678)
* update cvcuda 0.2.0 -> 0.2.1

* add cpp tutorials demo

* fix reviewed problem
2023-03-24 16:57:35 +08:00

187 lines
6.1 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/common/processors/stride_pad.h"
namespace fastdeploy {
namespace vision {
bool StridePad::ImplByOpenCV(Mat* mat) {
if (mat->layout != Layout::HWC) {
FDERROR << "StridePad: The input data must be Layout::HWC format!"
<< std::endl;
return false;
}
if (mat->Channels() > 4) {
FDERROR << "StridePad: Only support channels <= 4." << std::endl;
return false;
}
if (mat->Channels() != value_.size()) {
FDERROR
<< "StridePad: Require input channels equals to size of padding value, "
"but now channels = "
<< mat->Channels() << ", the size of padding values = " << value_.size()
<< "." << std::endl;
return false;
}
int origin_w = mat->Width();
int origin_h = mat->Height();
int pad_h = (mat->Height() / stride_) * stride_ +
(mat->Height() % stride_ != 0) * stride_ - mat->Height();
int pad_w = (mat->Width() / stride_) * stride_ +
(mat->Width() % stride_ != 0) * stride_ - mat->Width();
if (pad_h == 0 && pad_w == 0) {
return true;
}
cv::Mat* im = mat->GetOpenCVMat();
cv::Scalar value;
if (value_.size() == 1) {
value = cv::Scalar(value_[0]);
} else if (value_.size() == 2) {
value = cv::Scalar(value_[0], value_[1]);
} else if (value_.size() == 3) {
value = cv::Scalar(value_[0], value_[1], value_[2]);
} else {
value = cv::Scalar(value_[0], value_[1], value_[2], value_[3]);
}
// top, bottom, left, right
cv::copyMakeBorder(*im, *im, 0, pad_h, 0, pad_w, cv::BORDER_CONSTANT, value);
mat->SetHeight(origin_h + pad_h);
mat->SetWidth(origin_w + pad_w);
return true;
}
#ifdef ENABLE_FLYCV
bool StridePad::ImplByFlyCV(Mat* mat) {
if (mat->layout != Layout::HWC) {
FDERROR << "StridePad: The input data must be Layout::HWC format!"
<< std::endl;
return false;
}
if (mat->Channels() > 4) {
FDERROR << "StridePad: Only support channels <= 4." << std::endl;
return false;
}
if (mat->Channels() != value_.size()) {
FDERROR
<< "StridePad: Require input channels equals to size of padding value, "
"but now channels = "
<< mat->Channels() << ", the size of padding values = " << value_.size()
<< "." << std::endl;
return false;
}
int origin_w = mat->Width();
int origin_h = mat->Height();
int pad_h = (mat->Height() / stride_) * stride_ +
(mat->Height() % stride_ != 0) * stride_ - mat->Height();
int pad_w = (mat->Width() / stride_) * stride_ +
(mat->Width() % stride_ != 0) * stride_ - mat->Width();
if (pad_h == 0 && pad_w == 0) {
return true;
}
fcv::Mat* im = mat->GetFlyCVMat();
fcv::Scalar value;
if (value_.size() == 1) {
value = fcv::Scalar(value_[0]);
} else if (value_.size() == 2) {
value = fcv::Scalar(value_[0], value_[1]);
} else if (value_.size() == 3) {
value = fcv::Scalar(value_[0], value_[1], value_[2]);
} else {
value = fcv::Scalar(value_[0], value_[1], value_[2], value_[3]);
}
fcv::Mat new_im;
// top, bottom, left, right
fcv::copy_make_border(*im, new_im, 0, pad_h, 0, pad_w,
fcv::BorderType::BORDER_CONSTANT, value);
mat->SetMat(new_im);
mat->SetHeight(new_im.height());
mat->SetWidth(new_im.width());
return true;
}
#endif
#ifdef ENABLE_CVCUDA
bool StridePad::ImplByCvCuda(FDMat* mat) {
if (mat->layout != Layout::HWC) {
FDERROR << "StridePad: The input data must be Layout::HWC format!"
<< std::endl;
return false;
}
if (mat->Channels() > 4) {
FDERROR << "StridePad: Only support channels <= 4." << std::endl;
return false;
}
if (mat->Channels() != value_.size()) {
FDERROR
<< "StridePad: Require input channels equals to size of padding value, "
"but now channels = "
<< mat->Channels() << ", the size of padding values = " << value_.size()
<< "." << std::endl;
return false;
}
int origin_w = mat->Width();
int origin_h = mat->Height();
int pad_h = (mat->Height() / stride_) * stride_ +
(mat->Height() % stride_ != 0) * stride_ - mat->Height();
int pad_w = (mat->Width() / stride_) * stride_ +
(mat->Width() % stride_ != 0) * stride_ - mat->Width();
if (pad_h == 0 && pad_w == 0) {
return true;
}
float4 value;
if (value_.size() == 1) {
value = make_float4(value_[0], 0.0f, 0.0f, 0.0f);
} else if (value_.size() == 2) {
value = make_float4(value_[0], value_[1], 0.0f, 0.0f);
} else if (value_.size() == 3) {
value = make_float4(value_[0], value_[1], value_[2], 0.0f);
} else {
value = make_float4(value_[0], value_[1], value_[2], value_[3]);
}
// Prepare input tensor
FDTensor* src = CreateCachedGpuInputTensor(mat);
auto src_tensor = CreateCvCudaTensorWrapData(*src);
int height = mat->Height() + pad_h;
int width = mat->Width() + pad_w;
// Prepare output tensor
mat->output_cache->Resize({height, width, mat->Channels()}, mat->Type(),
"output_cache", Device::GPU);
auto dst_tensor = CreateCvCudaTensorWrapData(*(mat->output_cache));
cvcuda_pad_op_(mat->Stream(), *src_tensor, *dst_tensor, 0, 0,
NVCV_BORDER_CONSTANT, value);
mat->SetTensor(mat->output_cache);
mat->mat_type = ProcLib::CVCUDA;
return true;
}
#endif
bool StridePad::Run(Mat* mat, int stride, const std::vector<float>& value,
ProcLib lib) {
auto p = StridePad(stride, value);
return p(mat, lib);
}
} // namespace vision
} // namespace fastdeploy