mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00
153 lines
5.0 KiB
C++
153 lines
5.0 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/common/processors/pad.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
|
|
bool Pad::ImplByOpenCV(Mat* mat) {
|
|
if (mat->layout != Layout::HWC) {
|
|
FDERROR << "Pad: The input data must be Layout::HWC format!" << std::endl;
|
|
return false;
|
|
}
|
|
if (mat->Channels() > 4) {
|
|
FDERROR << "Pad: Only support channels <= 4." << std::endl;
|
|
return false;
|
|
}
|
|
if (mat->Channels() != value_.size()) {
|
|
FDERROR << "Pad: Require input channels equals to size of padding value, "
|
|
"but now channels = "
|
|
<< mat->Channels()
|
|
<< ", the size of padding values = " << value_.size() << "."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
cv::Mat* im = mat->GetOpenCVMat();
|
|
cv::Scalar value;
|
|
if (value_.size() == 1) {
|
|
value = cv::Scalar(value_[0]);
|
|
} else if (value_.size() == 2) {
|
|
value = cv::Scalar(value_[0], value_[1]);
|
|
} else if (value_.size() == 3) {
|
|
value = cv::Scalar(value_[0], value_[1], value_[2]);
|
|
} else {
|
|
value = cv::Scalar(value_[0], value_[1], value_[2], value_[3]);
|
|
}
|
|
cv::copyMakeBorder(*im, *im, top_, bottom_, left_, right_,
|
|
cv::BORDER_CONSTANT, value);
|
|
mat->SetHeight(im->rows);
|
|
mat->SetWidth(im->cols);
|
|
return true;
|
|
}
|
|
|
|
#ifdef ENABLE_FLYCV
|
|
bool Pad::ImplByFlyCV(Mat* mat) {
|
|
if (mat->layout != Layout::HWC) {
|
|
FDERROR << "Pad: The input data must be Layout::HWC format!" << std::endl;
|
|
return false;
|
|
}
|
|
if (mat->Channels() > 4) {
|
|
FDERROR << "Pad: Only support channels <= 4." << std::endl;
|
|
return false;
|
|
}
|
|
if (mat->Channels() != value_.size()) {
|
|
FDERROR << "Pad: Require input channels equals to size of padding value, "
|
|
"but now channels = "
|
|
<< mat->Channels()
|
|
<< ", the size of padding values = " << value_.size() << "."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
fcv::Mat* im = mat->GetFlyCVMat();
|
|
fcv::Scalar value;
|
|
if (value_.size() == 1) {
|
|
value = fcv::Scalar(value_[0]);
|
|
} else if (value_.size() == 2) {
|
|
value = fcv::Scalar(value_[0], value_[1]);
|
|
} else if (value_.size() == 3) {
|
|
value = fcv::Scalar(value_[0], value_[1], value_[2]);
|
|
} else {
|
|
value = fcv::Scalar(value_[0], value_[1], value_[2], value_[3]);
|
|
}
|
|
fcv::Mat new_im;
|
|
fcv::copy_make_border(*im, new_im, top_, bottom_, left_, right_,
|
|
fcv::BorderType::BORDER_CONSTANT, value);
|
|
mat->SetMat(new_im);
|
|
mat->SetHeight(new_im.height());
|
|
mat->SetWidth(new_im.width());
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
#ifdef ENABLE_CVCUDA
|
|
bool Pad::ImplByCvCuda(FDMat* mat) {
|
|
if (mat->layout != Layout::HWC) {
|
|
FDERROR << "Pad: The input data must be Layout::HWC format!" << std::endl;
|
|
return false;
|
|
}
|
|
if (mat->Channels() > 4) {
|
|
FDERROR << "Pad: Only support channels <= 4." << std::endl;
|
|
return false;
|
|
}
|
|
if (mat->Channels() != value_.size()) {
|
|
FDERROR << "Pad: Require input channels equals to size of padding value, "
|
|
"but now channels = "
|
|
<< mat->Channels()
|
|
<< ", the size of padding values = " << value_.size() << "."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
|
|
float4 value;
|
|
if (value_.size() == 1) {
|
|
value = make_float4(value_[0], 0.0f, 0.0f, 0.0f);
|
|
} else if (value_.size() == 2) {
|
|
value = make_float4(value_[0], value_[1], 0.0f, 0.0f);
|
|
} else if (value_.size() == 3) {
|
|
value = make_float4(value_[0], value_[1], value_[2], 0.0f);
|
|
} else {
|
|
value = make_float4(value_[0], value_[1], value_[2], value_[3]);
|
|
}
|
|
|
|
// Prepare input tensor
|
|
FDTensor* src = CreateCachedGpuInputTensor(mat);
|
|
auto src_tensor = CreateCvCudaTensorWrapData(*src);
|
|
|
|
int height = mat->Height() + top_ + bottom_;
|
|
int width = mat->Width() + left_ + right_;
|
|
|
|
// Prepare output tensor
|
|
mat->output_cache->Resize({height, width, mat->Channels()}, mat->Type(),
|
|
"output_cache", Device::GPU);
|
|
auto dst_tensor = CreateCvCudaTensorWrapData(*(mat->output_cache));
|
|
|
|
cvcuda_pad_op_(mat->Stream(), *src_tensor, *dst_tensor, top_, left_,
|
|
NVCV_BORDER_CONSTANT, value);
|
|
|
|
mat->SetTensor(mat->output_cache);
|
|
mat->mat_type = ProcLib::CVCUDA;
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
bool Pad::Run(Mat* mat, const int& top, const int& bottom, const int& left,
|
|
const int& right, const std::vector<float>& value, ProcLib lib) {
|
|
auto p = Pad(top, bottom, left, right, value);
|
|
return p(mat, lib);
|
|
}
|
|
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|