Files
FastDeploy/fastdeploy/vision/common/processors/normalize_and_permute.cc
Wang Xinyu d3d914856d [CVCUDA] Utilize CV-CUDA batch processing function (#1223)
* norm and permute batch processing

* move cache to mat, batch processors

* get batched tensor logic, resize on cpu logic

* fix cpu compile error

* remove vector mat api

* nits

* add comments

* nits

* fix batch size

* move initial resize on cpu option to use_cuda api

* fix pybind

* processor manager pybind

* rename mat and matbatch

* move initial resize on cpu to ppcls preprocessor

---------

Co-authored-by: Jason <jiangjiajun@baidu.com>
2023-02-07 13:44:30 +08:00

123 lines
4.3 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/common/processors/normalize_and_permute.h"
namespace fastdeploy {
namespace vision {
NormalizeAndPermute::NormalizeAndPermute(const std::vector<float>& mean,
const std::vector<float>& std,
bool is_scale,
const std::vector<float>& min,
const std::vector<float>& max,
bool swap_rb) {
FDASSERT(mean.size() == std.size(),
"Normalize: requires the size of mean equal to the size of std.");
std::vector<double> mean_(mean.begin(), mean.end());
std::vector<double> std_(std.begin(), std.end());
std::vector<double> min_(mean.size(), 0.0);
std::vector<double> max_(mean.size(), 255.0);
if (min.size() != 0) {
FDASSERT(
min.size() == mean.size(),
"Normalize: while min is defined, requires the size of min equal to "
"the size of mean.");
min_.assign(min.begin(), min.end());
}
if (max.size() != 0) {
FDASSERT(
min.size() == mean.size(),
"Normalize: while max is defined, requires the size of max equal to "
"the size of mean.");
max_.assign(max.begin(), max.end());
}
for (auto c = 0; c < mean_.size(); ++c) {
double alpha = 1.0;
if (is_scale) {
alpha /= (max_[c] - min_[c]);
}
double beta = -1.0 * (mean_[c] + min_[c] * alpha) / std_[c];
alpha /= std_[c];
alpha_.push_back(alpha);
beta_.push_back(beta);
}
swap_rb_ = swap_rb;
}
bool NormalizeAndPermute::ImplByOpenCV(FDMat* mat) {
cv::Mat* im = mat->GetOpenCVMat();
int origin_w = im->cols;
int origin_h = im->rows;
std::vector<cv::Mat> split_im;
cv::split(*im, split_im);
if (swap_rb_) std::swap(split_im[0], split_im[2]);
for (int c = 0; c < im->channels(); c++) {
split_im[c].convertTo(split_im[c], CV_32FC1, alpha_[c], beta_[c]);
}
cv::Mat res(origin_h, origin_w, CV_32FC(im->channels()));
for (int i = 0; i < im->channels(); ++i) {
cv::extractChannel(split_im[i],
cv::Mat(origin_h, origin_w, CV_32FC1,
res.ptr() + i * origin_h * origin_w * 4),
0);
}
mat->SetMat(res);
mat->layout = Layout::CHW;
return true;
}
#ifdef ENABLE_FLYCV
bool NormalizeAndPermute::ImplByFlyCV(FDMat* mat) {
if (mat->layout != Layout::HWC) {
FDERROR << "Only supports input with HWC layout." << std::endl;
return false;
}
fcv::Mat* im = mat->GetFlyCVMat();
if (im->channels() != 3) {
FDERROR << "Only supports 3-channels image in FlyCV, but now it's "
<< im->channels() << "." << std::endl;
return false;
}
std::vector<float> mean(3, 0);
std::vector<float> std(3, 0);
for (size_t i = 0; i < 3; ++i) {
std[i] = 1.0 / alpha_[i];
mean[i] = -1 * beta_[i] * std[i];
}
std::vector<uint32_t> channel_reorder_index = {0, 1, 2};
if (swap_rb_) std::swap(channel_reorder_index[0], channel_reorder_index[2]);
fcv::Mat new_im;
fcv::normalize_to_submean_to_reorder(*im, mean, std, channel_reorder_index,
new_im, false);
mat->SetMat(new_im);
mat->layout = Layout::CHW;
return true;
}
#endif
bool NormalizeAndPermute::Run(FDMat* mat, const std::vector<float>& mean,
const std::vector<float>& std, bool is_scale,
const std::vector<float>& min,
const std::vector<float>& max, ProcLib lib,
bool swap_rb) {
auto n = NormalizeAndPermute(mean, std, is_scale, min, max, swap_rb);
return n(mat, lib);
}
} // namespace vision
} // namespace fastdeploy