mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* ppdet preproc use manager * pad_to_size chw opencv * pad_to_size chw flycv * fix pad_to_size flycv * add warning message * cvcuda convert cubic to linear, padToSize cvcuda * stridedpad cvcuda * fix flycv include * fix flycv include * fix flycv build * cast cvcuda * fix pybind * fix normalize permute cuda * base processor move funcs to cc * Update pad_to_size.cc
338 lines
10 KiB
C++
338 lines
10 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#include "fastdeploy/vision/common/processors/mat.h"
|
|
|
|
#include "fastdeploy/utils/utils.h"
|
|
#include "fastdeploy/vision/common/processors/utils.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
|
|
cv::Mat* Mat::GetOpenCVMat() {
|
|
if (mat_type == ProcLib::OPENCV) {
|
|
return &cpu_mat;
|
|
} else if (mat_type == ProcLib::FLYCV) {
|
|
#ifdef ENABLE_FLYCV
|
|
// Just a reference to fcv_mat, zero copy. After you
|
|
// call this method, cpu_mat and fcv_mat will point
|
|
// to the same memory buffer.
|
|
cpu_mat = ConvertFlyCVMatToOpenCV(fcv_mat);
|
|
mat_type = ProcLib::OPENCV;
|
|
return &cpu_mat;
|
|
#else
|
|
FDASSERT(false, "FastDeploy didn't compiled with FlyCV!");
|
|
#endif
|
|
} else if (mat_type == ProcLib::CUDA || mat_type == ProcLib::CVCUDA) {
|
|
#ifdef WITH_GPU
|
|
FDASSERT(cudaStreamSynchronize(stream) == cudaSuccess,
|
|
"[ERROR] Error occurs while sync cuda stream.");
|
|
cpu_mat = CreateZeroCopyOpenCVMatFromTensor(*fd_tensor, layout);
|
|
mat_type = ProcLib::OPENCV;
|
|
device = Device::CPU;
|
|
return &cpu_mat;
|
|
#else
|
|
FDASSERT(false, "FastDeploy didn't compiled with -DWITH_GPU=ON");
|
|
#endif
|
|
} else {
|
|
FDASSERT(false, "The mat_type of custom Mat can not be ProcLib::DEFAULT");
|
|
}
|
|
}
|
|
|
|
#ifdef ENABLE_FLYCV
|
|
fcv::Mat* Mat::GetFlyCVMat() {
|
|
if (mat_type == ProcLib::FLYCV) {
|
|
return &fcv_mat;
|
|
} else if (mat_type == ProcLib::OPENCV) {
|
|
// Just a reference to cpu_mat, zero copy. After you
|
|
// call this method, fcv_mat and cpu_mat will point
|
|
// to the same memory buffer.
|
|
fcv_mat = ConvertOpenCVMatToFlyCV(cpu_mat);
|
|
mat_type = ProcLib::FLYCV;
|
|
return &fcv_mat;
|
|
} else {
|
|
FDASSERT(false, "The mat_type of custom Mat can not be ProcLib::DEFAULT");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void* Mat::Data() {
|
|
if (mat_type == ProcLib::FLYCV) {
|
|
#ifdef ENABLE_FLYCV
|
|
return fcv_mat.data();
|
|
#else
|
|
FDASSERT(false,
|
|
"FastDeploy didn't compile with FlyCV, but met data type with "
|
|
"fcv::Mat.");
|
|
#endif
|
|
} else if (device == Device::GPU) {
|
|
return fd_tensor->Data();
|
|
}
|
|
return cpu_mat.ptr();
|
|
}
|
|
|
|
FDTensor* Mat::Tensor() {
|
|
if (mat_type == ProcLib::OPENCV) {
|
|
ShareWithTensor(fd_tensor.get());
|
|
} else if (mat_type == ProcLib::FLYCV) {
|
|
#ifdef ENABLE_FLYCV
|
|
cpu_mat = ConvertFlyCVMatToOpenCV(fcv_mat);
|
|
mat_type = ProcLib::OPENCV;
|
|
ShareWithTensor(fd_tensor.get());
|
|
#else
|
|
FDASSERT(false, "FastDeploy didn't compiled with FlyCV!");
|
|
#endif
|
|
}
|
|
return fd_tensor.get();
|
|
}
|
|
|
|
void Mat::SetTensor(FDTensor* tensor) {
|
|
fd_tensor->SetExternalData(tensor->Shape(), tensor->Dtype(), tensor->Data(),
|
|
tensor->device, tensor->device_id);
|
|
device = tensor->device;
|
|
if (layout == Layout::HWC) {
|
|
height = tensor->Shape()[0];
|
|
width = tensor->Shape()[1];
|
|
channels = tensor->Shape()[2];
|
|
} else if (layout == Layout::CHW) {
|
|
channels = tensor->Shape()[0];
|
|
height = tensor->Shape()[1];
|
|
width = tensor->Shape()[2];
|
|
}
|
|
}
|
|
|
|
void Mat::SetTensor(std::shared_ptr<FDTensor>& tensor) {
|
|
fd_tensor = tensor;
|
|
device = tensor->device;
|
|
if (layout == Layout::HWC) {
|
|
height = tensor->Shape()[0];
|
|
width = tensor->Shape()[1];
|
|
channels = tensor->Shape()[2];
|
|
} else if (layout == Layout::CHW) {
|
|
channels = tensor->Shape()[0];
|
|
height = tensor->Shape()[1];
|
|
width = tensor->Shape()[2];
|
|
}
|
|
}
|
|
|
|
void Mat::ShareWithTensor(FDTensor* tensor) {
|
|
tensor->SetExternalData({Channels(), Height(), Width()}, Type(), Data());
|
|
tensor->device = device;
|
|
if (layout == Layout::HWC) {
|
|
tensor->shape = {Height(), Width(), Channels()};
|
|
}
|
|
}
|
|
|
|
bool Mat::CopyToTensor(FDTensor* tensor) {
|
|
int total_bytes = Height() * Width() * Channels() * FDDataTypeSize(Type());
|
|
if (total_bytes != tensor->Nbytes()) {
|
|
FDERROR << "While copy Mat to Tensor, requires the memory size be same, "
|
|
"but now size of Tensor = "
|
|
<< tensor->Nbytes() << ", size of Mat = " << total_bytes << "."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
memcpy(tensor->MutableData(), Data(), total_bytes);
|
|
return true;
|
|
}
|
|
|
|
void Mat::PrintInfo(const std::string& flag) {
|
|
std::cout << flag << ": "
|
|
<< "DataType=" << Type() << ", "
|
|
<< "Channel=" << Channels() << ", "
|
|
<< "Height=" << Height() << ", "
|
|
<< "Width=" << Width() << ", "
|
|
<< "Mean=";
|
|
if (mat_type == ProcLib::FLYCV) {
|
|
#ifdef ENABLE_FLYCV
|
|
fcv::Scalar mean = fcv::mean(fcv_mat);
|
|
for (int i = 0; i < Channels(); ++i) {
|
|
std::cout << mean[i] << " ";
|
|
}
|
|
std::cout << std::endl;
|
|
#else
|
|
FDASSERT(false,
|
|
"FastDeploy didn't compile with FlyCV, but met data type with "
|
|
"fcv::Mat.");
|
|
#endif
|
|
} else if (mat_type == ProcLib::OPENCV) {
|
|
cv::Scalar mean = cv::mean(cpu_mat);
|
|
for (int i = 0; i < Channels(); ++i) {
|
|
std::cout << mean[i] << " ";
|
|
}
|
|
std::cout << std::endl;
|
|
} else if (mat_type == ProcLib::CUDA || mat_type == ProcLib::CVCUDA) {
|
|
#ifdef WITH_GPU
|
|
FDASSERT(cudaStreamSynchronize(stream) == cudaSuccess,
|
|
"[ERROR] Error occurs while sync cuda stream.");
|
|
cv::Mat tmp_mat = CreateZeroCopyOpenCVMatFromTensor(*fd_tensor, layout);
|
|
cv::Scalar mean = cv::mean(tmp_mat);
|
|
for (int i = 0; i < Channels(); ++i) {
|
|
std::cout << mean[i] << " ";
|
|
}
|
|
std::cout << std::endl;
|
|
#else
|
|
FDASSERT(false, "FastDeploy didn't compiled with -DWITH_GPU=ON");
|
|
#endif
|
|
}
|
|
}
|
|
|
|
FDDataType Mat::Type() {
|
|
int type = -1;
|
|
if (mat_type == ProcLib::FLYCV) {
|
|
#ifdef ENABLE_FLYCV
|
|
return FlyCVDataTypeToFD(fcv_mat.type());
|
|
#else
|
|
FDASSERT(false,
|
|
"FastDeploy didn't compile with FlyCV, but met data type with "
|
|
"fcv::Mat.");
|
|
#endif
|
|
} else if (mat_type == ProcLib::CUDA || mat_type == ProcLib::CVCUDA) {
|
|
return fd_tensor->Dtype();
|
|
}
|
|
return OpenCVDataTypeToFD(cpu_mat.type());
|
|
}
|
|
|
|
Mat Mat::Create(const FDTensor& tensor) {
|
|
if (DefaultProcLib::default_lib == ProcLib::FLYCV) {
|
|
#ifdef ENABLE_FLYCV
|
|
fcv::Mat tmp_fcv_mat = CreateZeroCopyFlyCVMatFromTensor(tensor);
|
|
Mat mat = Mat(tmp_fcv_mat);
|
|
return mat;
|
|
#else
|
|
FDASSERT(false, "FastDeploy didn't compiled with FlyCV!");
|
|
#endif
|
|
}
|
|
cv::Mat tmp_ocv_mat = CreateZeroCopyOpenCVMatFromTensor(tensor);
|
|
Mat mat = Mat(tmp_ocv_mat);
|
|
return mat;
|
|
}
|
|
|
|
Mat Mat::Create(const FDTensor& tensor, ProcLib lib) {
|
|
if (lib == ProcLib::DEFAULT) {
|
|
return Create(tensor);
|
|
}
|
|
if (lib == ProcLib::FLYCV) {
|
|
#ifdef ENABLE_FLYCV
|
|
fcv::Mat tmp_fcv_mat = CreateZeroCopyFlyCVMatFromTensor(tensor);
|
|
Mat mat = Mat(tmp_fcv_mat);
|
|
return mat;
|
|
#else
|
|
FDASSERT(false, "FastDeploy didn't compiled with FlyCV!");
|
|
#endif
|
|
}
|
|
cv::Mat tmp_ocv_mat = CreateZeroCopyOpenCVMatFromTensor(tensor);
|
|
Mat mat = Mat(tmp_ocv_mat);
|
|
return mat;
|
|
}
|
|
|
|
Mat Mat::Create(int height, int width, int channels, FDDataType type,
|
|
void* data) {
|
|
if (DefaultProcLib::default_lib == ProcLib::FLYCV) {
|
|
#ifdef ENABLE_FLYCV
|
|
fcv::Mat tmp_fcv_mat =
|
|
CreateZeroCopyFlyCVMatFromBuffer(height, width, channels, type, data);
|
|
Mat mat = Mat(tmp_fcv_mat);
|
|
return mat;
|
|
#else
|
|
FDASSERT(false, "FastDeploy didn't compiled with FlyCV!");
|
|
#endif
|
|
}
|
|
cv::Mat tmp_ocv_mat =
|
|
CreateZeroCopyOpenCVMatFromBuffer(height, width, channels, type, data);
|
|
Mat mat = Mat(tmp_ocv_mat);
|
|
return mat;
|
|
}
|
|
|
|
Mat Mat::Create(int height, int width, int channels, FDDataType type,
|
|
void* data, ProcLib lib) {
|
|
if (lib == ProcLib::DEFAULT) {
|
|
return Create(height, width, channels, type, data);
|
|
}
|
|
if (lib == ProcLib::FLYCV) {
|
|
#ifdef ENABLE_FLYCV
|
|
fcv::Mat tmp_fcv_mat =
|
|
CreateZeroCopyFlyCVMatFromBuffer(height, width, channels, type, data);
|
|
Mat mat = Mat(tmp_fcv_mat);
|
|
return mat;
|
|
#else
|
|
FDASSERT(false, "FastDeploy didn't compiled with FlyCV!");
|
|
#endif
|
|
}
|
|
cv::Mat tmp_ocv_mat =
|
|
CreateZeroCopyOpenCVMatFromBuffer(height, width, channels, type, data);
|
|
Mat mat = Mat(tmp_ocv_mat);
|
|
return mat;
|
|
}
|
|
|
|
FDMat WrapMat(const cv::Mat& image) {
|
|
FDMat mat(image);
|
|
return mat;
|
|
}
|
|
|
|
std::vector<FDMat> WrapMat(const std::vector<cv::Mat>& images) {
|
|
std::vector<FDMat> mats;
|
|
for (size_t i = 0; i < images.size(); ++i) {
|
|
mats.emplace_back(FDMat(images[i]));
|
|
}
|
|
return mats;
|
|
}
|
|
|
|
bool CheckShapeConsistency(std::vector<Mat>* mats) {
|
|
if (mats == nullptr) {
|
|
return true;
|
|
}
|
|
for (size_t i = 1; i < mats->size(); ++i) {
|
|
if ((*mats)[i].Channels() != (*mats)[0].Channels() ||
|
|
(*mats)[i].Width() != (*mats)[0].Width() ||
|
|
(*mats)[i].Height() != (*mats)[0].Height()) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
FDTensor* CreateCachedGpuInputTensor(Mat* mat) {
|
|
#ifdef WITH_GPU
|
|
FDTensor* src = mat->Tensor();
|
|
// Need to make sure the tensor is pointed to the input_cache.
|
|
if (src->Data() == mat->output_cache->Data()) {
|
|
std::swap(mat->input_cache, mat->output_cache);
|
|
std::swap(mat->input_cache->name, mat->output_cache->name);
|
|
}
|
|
if (src->device == Device::GPU) {
|
|
return src;
|
|
} else if (src->device == Device::CPU) {
|
|
// Tensor on CPU, we need copy it from CPU to GPU
|
|
FDASSERT(src->Shape().size() == 3, "The CPU tensor must has 3 dims.")
|
|
mat->output_cache->Resize(src->Shape(), src->Dtype(), "output_cache",
|
|
Device::GPU);
|
|
FDASSERT(
|
|
cudaMemcpyAsync(mat->output_cache->Data(), src->Data(), src->Nbytes(),
|
|
cudaMemcpyHostToDevice, mat->Stream()) == 0,
|
|
"[ERROR] Error occurs while copy memory from CPU to GPU.");
|
|
std::swap(mat->input_cache, mat->output_cache);
|
|
std::swap(mat->input_cache->name, mat->output_cache->name);
|
|
return mat->input_cache;
|
|
} else {
|
|
FDASSERT(false, "FDMat is on unsupported device: %d", src->device);
|
|
}
|
|
#else
|
|
FDASSERT(false, "FastDeploy didn't compile with WITH_GPU.");
|
|
#endif
|
|
return nullptr;
|
|
}
|
|
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|