mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* add vision processors cpp api doc * add base class Processor in api doc * Update base.h --------- Co-authored-by: Wang Xinyu <shaywxy@gmail.com>
104 lines
2.9 KiB
C++
104 lines
2.9 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include "fastdeploy/utils/utils.h"
|
|
#include "fastdeploy/vision/common/processors/mat.h"
|
|
#include "fastdeploy/vision/common/processors/mat_batch.h"
|
|
#include "fastdeploy/vision/common/processors/base.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
|
|
/*! @brief ProcessorManager for Preprocess
|
|
*/
|
|
class FASTDEPLOY_DECL ProcessorManager {
|
|
public:
|
|
~ProcessorManager();
|
|
|
|
/** \brief Use CUDA to boost the performance of processors
|
|
*
|
|
* \param[in] enable_cv_cuda ture: use CV-CUDA, false: use CUDA only
|
|
* \param[in] gpu_id GPU device id
|
|
* \return true if the preprocess successed, otherwise false
|
|
*/
|
|
void UseCuda(bool enable_cv_cuda = false, int gpu_id = -1);
|
|
|
|
bool CudaUsed();
|
|
|
|
#ifdef WITH_GPU
|
|
cudaStream_t Stream() const { return stream_; }
|
|
#endif
|
|
|
|
void SetStream(FDMat* mat) {
|
|
#ifdef WITH_GPU
|
|
mat->SetStream(stream_);
|
|
#endif
|
|
}
|
|
|
|
void SetStream(FDMatBatch* mat_batch) {
|
|
#ifdef WITH_GPU
|
|
mat_batch->SetStream(stream_);
|
|
#endif
|
|
}
|
|
|
|
void SyncStream() {
|
|
#ifdef WITH_GPU
|
|
FDASSERT(cudaStreamSynchronize(stream_) == cudaSuccess,
|
|
"[ERROR] Error occurs while sync cuda stream.");
|
|
#endif
|
|
}
|
|
|
|
int DeviceId() { return device_id_; }
|
|
|
|
/** \brief Process the input images and prepare input tensors for runtime
|
|
*
|
|
* \param[in] images The input image data list, all the elements are returned by cv::imread()
|
|
* \param[in] outputs The output tensors which will feed in runtime
|
|
* \return true if the preprocess successed, otherwise false
|
|
*/
|
|
bool Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs);
|
|
|
|
/** \brief Apply() is the body of Run() function, it needs to be implemented by a derived class
|
|
*
|
|
* \param[in] image_batch The input image batch
|
|
* \param[in] outputs The output tensors which will feed in runtime
|
|
* \return true if the preprocess successed, otherwise false
|
|
*/
|
|
virtual bool Apply(FDMatBatch* image_batch,
|
|
std::vector<FDTensor>* outputs) = 0;
|
|
|
|
void PreApply(FDMatBatch* image_batch);
|
|
|
|
void PostApply();
|
|
|
|
protected:
|
|
ProcLib proc_lib_ = ProcLib::DEFAULT;
|
|
|
|
private:
|
|
#ifdef WITH_GPU
|
|
cudaStream_t stream_ = nullptr;
|
|
#endif
|
|
int device_id_ = -1;
|
|
|
|
std::vector<FDTensor> input_caches_;
|
|
std::vector<FDTensor> output_caches_;
|
|
FDTensor batch_input_cache_;
|
|
FDTensor batch_output_cache_;
|
|
};
|
|
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|