mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00
129 lines
4.5 KiB
C++
129 lines
4.5 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/common/processors/cvcuda_utils.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
|
|
#ifdef ENABLE_CVCUDA
|
|
nvcv::ImageFormat CreateCvCudaImageFormat(FDDataType type, int channel,
|
|
bool interleaved) {
|
|
FDASSERT(channel == 1 || channel == 3 || channel == 4,
|
|
"Only support channel be 1/3/4 in CV-CUDA.");
|
|
if (type == FDDataType::UINT8) {
|
|
if (channel == 1) {
|
|
return nvcv::FMT_U8;
|
|
} else if (channel == 3) {
|
|
return (interleaved ? nvcv::FMT_BGR8 : nvcv::FMT_BGR8p);
|
|
} else {
|
|
return (interleaved ? nvcv::FMT_BGRA8 : nvcv::FMT_BGRA8p);
|
|
}
|
|
} else if (type == FDDataType::FP32) {
|
|
if (channel == 1) {
|
|
return nvcv::FMT_F32;
|
|
} else if (channel == 3) {
|
|
return (interleaved ? nvcv::FMT_BGRf32 : nvcv::FMT_BGRf32p);
|
|
} else {
|
|
return (interleaved ? nvcv::FMT_BGRAf32 : nvcv::FMT_BGRAf32p);
|
|
}
|
|
}
|
|
FDASSERT(false, "Data type of %s is not supported.", Str(type).c_str());
|
|
return nvcv::FMT_BGRf32;
|
|
}
|
|
|
|
std::shared_ptr<nvcv::TensorWrapData> CreateCvCudaTensorWrapData(
|
|
const FDTensor& tensor, Layout layout) {
|
|
FDASSERT(tensor.shape.size() == 3,
|
|
"When create CVCUDA tensor from FD tensor,"
|
|
"tensor shape should be 3-Dim,");
|
|
int batchsize = 1;
|
|
int h = tensor.Shape()[0];
|
|
int w = tensor.Shape()[1];
|
|
int c = tensor.Shape()[2];
|
|
|
|
nvcv::TensorDataStridedCuda::Buffer buf;
|
|
buf.strides[3] = FDDataTypeSize(tensor.Dtype());
|
|
buf.strides[2] = c * buf.strides[3];
|
|
buf.strides[1] = w * buf.strides[2];
|
|
buf.strides[0] = h * buf.strides[1];
|
|
if (layout == Layout::CHW) {
|
|
c = tensor.Shape()[0];
|
|
h = tensor.Shape()[1];
|
|
w = tensor.Shape()[2];
|
|
buf.strides[3] = FDDataTypeSize(tensor.Dtype());
|
|
buf.strides[2] = w * buf.strides[3];
|
|
buf.strides[1] = h * buf.strides[2];
|
|
buf.strides[0] = c * buf.strides[1];
|
|
}
|
|
buf.basePtr = reinterpret_cast<NVCVByte*>(const_cast<void*>(tensor.Data()));
|
|
|
|
nvcv::Tensor::Requirements req = nvcv::Tensor::CalcRequirements(
|
|
batchsize, {w, h},
|
|
CreateCvCudaImageFormat(tensor.Dtype(), c, layout == Layout::HWC));
|
|
|
|
nvcv::TensorDataStridedCuda tensor_data(
|
|
nvcv::TensorShape{req.shape, req.rank, req.layout},
|
|
nvcv::DataType{req.dtype}, buf);
|
|
return std::make_shared<nvcv::TensorWrapData>(tensor_data, nullptr);
|
|
}
|
|
|
|
void* GetCvCudaTensorDataPtr(const nvcv::TensorWrapData& tensor) {
|
|
auto data =
|
|
dynamic_cast<const nvcv::ITensorDataStridedCuda*>(tensor.exportData());
|
|
return reinterpret_cast<void*>(data->basePtr());
|
|
}
|
|
|
|
nvcv::ImageWrapData CreateImageWrapData(const FDTensor& tensor) {
|
|
FDASSERT(tensor.shape.size() == 3,
|
|
"When create CVCUDA image from FD tensor,"
|
|
"tensor shape should be 3-Dim, HWC layout");
|
|
int h = tensor.Shape()[0];
|
|
int w = tensor.Shape()[1];
|
|
int c = tensor.Shape()[2];
|
|
nvcv::ImageDataStridedCuda::Buffer buf;
|
|
buf.numPlanes = 1;
|
|
buf.planes[0].width = w;
|
|
buf.planes[0].height = h;
|
|
buf.planes[0].rowStride = w * c * FDDataTypeSize(tensor.Dtype());
|
|
buf.planes[0].basePtr =
|
|
reinterpret_cast<NVCVByte*>(const_cast<void*>(tensor.Data()));
|
|
nvcv::ImageWrapData nvimg{nvcv::ImageDataStridedCuda{
|
|
nvcv::ImageFormat{CreateCvCudaImageFormat(tensor.Dtype(), c)}, buf}};
|
|
return nvimg;
|
|
}
|
|
|
|
void CreateCvCudaImageBatchVarShape(std::vector<FDTensor*>& tensors,
|
|
nvcv::ImageBatchVarShape& img_batch) {
|
|
for (size_t i = 0; i < tensors.size(); ++i) {
|
|
FDASSERT(tensors[i]->device == Device::GPU, "Tensor must on GPU.");
|
|
img_batch.pushBack(CreateImageWrapData(*(tensors[i])));
|
|
}
|
|
}
|
|
|
|
NVCVInterpolationType CreateCvCudaInterp(int interp) {
|
|
// CV-CUDA Interp value is compatible with OpenCV
|
|
auto nvcv_interp = NVCVInterpolationType(interp);
|
|
|
|
// Due to bug of CV-CUDA CUBIC resize, will force to convert CUBIC to LINEAR
|
|
if (nvcv_interp == NVCV_INTERP_CUBIC) {
|
|
return NVCV_INTERP_LINEAR;
|
|
}
|
|
return nvcv_interp;
|
|
}
|
|
#endif
|
|
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|