Files
FastDeploy/fastdeploy/function/cumprod.cc
2022-11-24 06:56:47 +00:00

79 lines
2.5 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/function/cumprod.h"
namespace fastdeploy {
namespace function {
void GetCumprodDimInfo(const std::vector<int64_t>& dim, int cumprod_dim,
size_t* outer_dim, size_t* mid_dim, size_t* inner_dim) {
int dim_size = dim.size();
FDASSERT(cumprod_dim >= -dim_size,
"The input dim of CumprodOp should be larger than the opposite "
"rank of input x which is %d. But received dim = %d",
-dim_size, cumprod_dim);
FDASSERT(cumprod_dim < dim_size,
"The input dim of CumprodOp should be smaller than the "
"rank of input x which is %d. But received dim = %d",
dim_size, cumprod_dim);
if (cumprod_dim < 0)
cumprod_dim += dim_size;
*outer_dim = 1;
for (int i = 0; i < cumprod_dim; ++i) {
*outer_dim *= dim[i];
}
*mid_dim = dim[cumprod_dim];
*inner_dim = 1;
for (int i = cumprod_dim + 1; i < dim_size; ++i) {
*inner_dim *= dim[i];
}
}
template <typename T>
void CumprodKernel(const FDTensor& x, FDTensor* out, int axis) {
auto* x_data = reinterpret_cast<const T*>(x.Data());
auto shape = x.Shape();
size_t outer_dim = 1;
size_t mid_dim = 1;
size_t inner_dim = 1;
GetCumprodDimInfo(shape, axis, &outer_dim, &mid_dim, &inner_dim);
out->Allocate(x.Shape(), x.Dtype());
auto* out_data = reinterpret_cast<T*>(out->Data());
for (size_t i = 0; i < outer_dim; i++) {
for (size_t j = 0; j < mid_dim; j++) {
for (size_t k = 0; k < inner_dim; k++) {
size_t pos = i * mid_dim * inner_dim + j * inner_dim + k;
if (j == 0) {
out_data[pos] = x_data[pos];
} else {
out_data[pos] = out_data[pos - inner_dim] * x_data[pos];
}
}
}
}
}
void Cumprod(const FDTensor& x, FDTensor* out, int axis) {
FD_VISIT_INT_FLOAT_TYPES(x.dtype, "CumprodKernel",
([&] { CumprodKernel<data_t>(x, out, axis); }));
}
} // namespace function
} // namespace fastdeploy