Files
FastDeploy/fastdeploy/vision/common/processors/resize.cc
Wang Xinyu 62e051e21d [CVCUDA] CMake integration, vison processor CV-CUDA integration, PaddleClas support CV-CUDA (#1074)
* cvcuda resize

* cvcuda center crop

* cvcuda resize

* add a fdtensor in fdmat

* get cv mat and get tensor support gpu

* paddleclas cvcuda preprocessor

* fix compile err

* fix windows compile error

* rename reused to cached

* address comment

* remove debug code

* add comment

* add manager run

* use cuda and cuda used

* use cv cuda doc

* address comment

---------

Co-authored-by: Jason <jiangjiajun@baidu.com>
2023-01-30 09:33:49 +08:00

182 lines
5.6 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/common/processors/resize.h"
#ifdef ENABLE_CVCUDA
#include <cvcuda/OpResize.hpp>
#include "fastdeploy/vision/common/processors/cvcuda_utils.h"
#endif
namespace fastdeploy {
namespace vision {
bool Resize::ImplByOpenCV(Mat* mat) {
if (mat->layout != Layout::HWC) {
FDERROR << "Resize: The format of input is not HWC." << std::endl;
return false;
}
cv::Mat* im = mat->GetOpenCVMat();
int origin_w = im->cols;
int origin_h = im->rows;
if (width_ == origin_w && height_ == origin_h) {
return true;
}
if (fabs(scale_w_ - 1.0) < 1e-06 && fabs(scale_h_ - 1.0) < 1e-06) {
return true;
}
if (width_ > 0 && height_ > 0) {
if (use_scale_) {
float scale_w = width_ * 1.0 / origin_w;
float scale_h = height_ * 1.0 / origin_h;
cv::resize(*im, *im, cv::Size(0, 0), scale_w, scale_h, interp_);
} else {
cv::resize(*im, *im, cv::Size(width_, height_), 0, 0, interp_);
}
} else if (scale_w_ > 0 && scale_h_ > 0) {
cv::resize(*im, *im, cv::Size(0, 0), scale_w_, scale_h_, interp_);
} else {
FDERROR << "Resize: the parameters must satisfy (width > 0 && height > 0) "
"or (scale_w > 0 && scale_h > 0)."
<< std::endl;
return false;
}
mat->SetWidth(im->cols);
mat->SetHeight(im->rows);
return true;
}
#ifdef ENABLE_FLYCV
bool Resize::ImplByFlyCV(Mat* mat) {
if (mat->layout != Layout::HWC) {
FDERROR << "Resize: The format of input is not HWC." << std::endl;
return false;
}
fcv::Mat* im = mat->GetFlyCVMat();
int origin_w = im->width();
int origin_h = im->height();
if (width_ == origin_w && height_ == origin_h) {
return true;
}
if (fabs(scale_w_ - 1.0) < 1e-06 && fabs(scale_h_ - 1.0) < 1e-06) {
return true;
}
auto interp_method = fcv::InterpolationType::INTER_LINEAR;
if (interp_ == 0) {
interp_method = fcv::InterpolationType::INTER_NEAREST;
} else if (interp_ == 1) {
interp_method = fcv::InterpolationType::INTER_LINEAR;
} else if (interp_ == 2) {
interp_method = fcv::InterpolationType::INTER_CUBIC;
} else if (interp_ == 3) {
interp_method = fcv::InterpolationType::INTER_AREA;
} else {
FDERROR << "Resize: Only support interp_ be 0/1/2/3 with FlyCV, but "
"now it's "
<< interp_ << "." << std::endl;
return false;
}
if (width_ > 0 && height_ > 0) {
fcv::Mat new_im;
if (use_scale_) {
float scale_w = width_ * 1.0 / origin_w;
float scale_h = height_ * 1.0 / origin_h;
fcv::resize(*im, new_im, fcv::Size(), scale_w, scale_h, interp_method);
} else {
fcv::resize(*im, new_im, fcv::Size(width_, height_), 0, 0, interp_method);
}
mat->SetMat(new_im);
mat->SetWidth(new_im.width());
mat->SetHeight(new_im.height());
} else if (scale_w_ > 0 && scale_h_ > 0) {
fcv::Mat new_im;
fcv::resize(*im, new_im, fcv::Size(0, 0), scale_w_, scale_h_,
interp_method);
mat->SetMat(new_im);
mat->SetWidth(new_im.width());
mat->SetHeight(new_im.height());
} else {
FDERROR << "Resize: the parameters must satisfy (width > 0 && height > 0) "
"or (scale_w > 0 && scale_h > 0)."
<< std::endl;
return false;
}
return true;
}
#endif
#ifdef ENABLE_CVCUDA
bool Resize::ImplByCvCuda(Mat* mat) {
if (width_ == mat->Width() && height_ == mat->Height()) {
return true;
}
if (fabs(scale_w_ - 1.0) < 1e-06 && fabs(scale_h_ - 1.0) < 1e-06) {
return true;
}
if (width_ > 0 && height_ > 0) {
} else if (scale_w_ > 0 && scale_h_ > 0) {
width_ = std::round(scale_w_ * mat->Width());
height_ = std::round(scale_h_ * mat->Height());
} else {
FDERROR << "Resize: the parameters must satisfy (width > 0 && height > 0) "
"or (scale_w > 0 && scale_h > 0)."
<< std::endl;
return false;
}
// Prepare input tensor
std::string tensor_name = Name() + "_cvcuda_src";
FDTensor* src = CreateCachedGpuInputTensor(mat, tensor_name);
auto src_tensor = CreateCvCudaTensorWrapData(*src);
// Prepare output tensor
tensor_name = Name() + "_cvcuda_dst";
FDTensor* dst =
UpdateAndGetCachedTensor({height_, width_, mat->Channels()}, mat->Type(),
tensor_name, Device::GPU);
auto dst_tensor = CreateCvCudaTensorWrapData(*dst);
// CV-CUDA Interp value is compatible with OpenCV
cvcuda::Resize resize_op;
resize_op(mat->Stream(), src_tensor, dst_tensor,
NVCVInterpolationType(interp_));
mat->SetTensor(dst);
mat->SetWidth(width_);
mat->SetHeight(height_);
mat->device = Device::GPU;
mat->mat_type = ProcLib::CVCUDA;
return true;
}
#endif
bool Resize::Run(Mat* mat, int width, int height, float scale_w, float scale_h,
int interp, bool use_scale, ProcLib lib) {
if (mat->Height() == height && mat->Width() == width) {
return true;
}
auto r = Resize(width, height, scale_w, scale_h, interp, use_scale);
return r(mat, lib);
}
} // namespace vision
} // namespace fastdeploy