Files
FastDeploy/fastdeploy/vision/common/processors/cvcuda_utils.cc
Wang Xinyu 62e051e21d [CVCUDA] CMake integration, vison processor CV-CUDA integration, PaddleClas support CV-CUDA (#1074)
* cvcuda resize

* cvcuda center crop

* cvcuda resize

* add a fdtensor in fdmat

* get cv mat and get tensor support gpu

* paddleclas cvcuda preprocessor

* fix compile err

* fix windows compile error

* rename reused to cached

* address comment

* remove debug code

* add comment

* add manager run

* use cuda and cuda used

* use cv cuda doc

* address comment

---------

Co-authored-by: Jason <jiangjiajun@baidu.com>
2023-01-30 09:33:49 +08:00

77 lines
2.6 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/common/processors/cvcuda_utils.h"
namespace fastdeploy {
namespace vision {
#ifdef ENABLE_CVCUDA
nvcv::ImageFormat CreateCvCudaImageFormat(FDDataType type, int channel) {
FDASSERT(channel == 1 || channel == 3 || channel == 4,
"Only support channel be 1/3/4 in CV-CUDA.");
if (type == FDDataType::UINT8) {
if (channel == 1) {
return nvcv::FMT_U8;
} else if (channel == 3) {
return nvcv::FMT_BGR8;
} else {
return nvcv::FMT_BGRA8;
}
} else if (type == FDDataType::FP32) {
if (channel == 1) {
return nvcv::FMT_F32;
} else if (channel == 3) {
return nvcv::FMT_BGRf32;
} else {
return nvcv::FMT_BGRAf32;
}
}
FDASSERT(false, "Data type of %s is not supported.", Str(type).c_str());
return nvcv::FMT_BGRf32;
}
nvcv::TensorWrapData CreateCvCudaTensorWrapData(const FDTensor& tensor) {
FDASSERT(tensor.shape.size() == 3,
"When create CVCUDA tensor from FD tensor,"
"tensor shape should be 3-Dim, HWC layout");
int batchsize = 1;
nvcv::TensorDataStridedCuda::Buffer buf;
buf.strides[3] = FDDataTypeSize(tensor.Dtype());
buf.strides[2] = tensor.shape[2] * buf.strides[3];
buf.strides[1] = tensor.shape[1] * buf.strides[2];
buf.strides[0] = tensor.shape[0] * buf.strides[1];
buf.basePtr = reinterpret_cast<NVCVByte*>(const_cast<void*>(tensor.Data()));
nvcv::Tensor::Requirements req = nvcv::Tensor::CalcRequirements(
batchsize, {tensor.shape[1], tensor.shape[0]},
CreateCvCudaImageFormat(tensor.Dtype(), tensor.shape[2]));
nvcv::TensorDataStridedCuda tensor_data(
nvcv::TensorShape{req.shape, req.rank, req.layout},
nvcv::DataType{req.dtype}, buf);
return nvcv::TensorWrapData(tensor_data);
}
void* GetCvCudaTensorDataPtr(const nvcv::TensorWrapData& tensor) {
auto data =
dynamic_cast<const nvcv::ITensorDataStridedCuda*>(tensor.exportData());
return reinterpret_cast<void*>(data->basePtr());
}
#endif
} // namespace vision
} // namespace fastdeploy