mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* Create README_CN.md * Update README.md * Update README_CN.md * Create README_CN.md * Update README.md * Create README_CN.md * Update README.md * Create README_CN.md * Update README.md * Create README_CN.md * Update README.md * Create README_CN.md * Update README.md * Create README_CN.md * Update README.md * Create README_CN.md * Update README.md * Update README.md * Update README_CN.md * Create README_CN.md * Update README.md * Update README.md * Update and rename README_en.md to README_CN.md * Update WebDemo.md * Update and rename WebDemo_en.md to WebDemo_CN.md * Update and rename DEVELOPMENT_cn.md to DEVELOPMENT_CN.md * Update DEVELOPMENT_CN.md * Update DEVELOPMENT.md * Update RNN.md * Update and rename RNN_EN.md to RNN_CN.md * Update README.md * Update and rename README_en.md to README_CN.md * Update README.md * Update and rename README_en.md to README_CN.md * Update README.md * Update README_cn.md * Rename README_cn.md to README_CN.md * Update README.md * Update README_cn.md * Rename README_cn.md to README_CN.md * Update export.md * Update and rename export_EN.md to export_CN.md * Update README.md * Update README.md * Create README_CN.md * Update README.md * Update README.md * Update kunlunxin.md * Update classification_result.md * Update classification_result_EN.md * Rename classification_result_EN.md to classification_result_CN.md * Update detection_result.md * Update and rename detection_result_EN.md to detection_result_CN.md * Update face_alignment_result.md * Update and rename face_alignment_result_EN.md to face_alignment_result_CN.md * Update face_detection_result.md * Update and rename face_detection_result_EN.md to face_detection_result_CN.md * Update face_recognition_result.md * Update and rename face_recognition_result_EN.md to face_recognition_result_CN.md * Update headpose_result.md * Update and rename headpose_result_EN.md to headpose_result_CN.md * Update keypointdetection_result.md * Update and rename keypointdetection_result_EN.md to keypointdetection_result_CN.md * Update matting_result.md * Update and rename matting_result_EN.md to matting_result_CN.md * Update mot_result.md * Update and rename mot_result_EN.md to mot_result_CN.md * Update ocr_result.md * Update and rename ocr_result_EN.md to ocr_result_CN.md * Update segmentation_result.md * Update and rename segmentation_result_EN.md to segmentation_result_CN.md * Update README.md * Update README.md * Update quantize.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md
English | 简体中文
Python Inference
Before running demo, the following two steps need to be confirmed:
-
- Hardware and software environment meets the requirements. Please refer to Environment requirements for FastDeploy.
-
- Install FastDeploy Python whl package, please refer to FastDeploy Python Installation.
This document shows an inference example on the CPU using the PaddleClas classification model MobileNetV2 as an example.
1. Obtaining the model
import fastdeploy as fd
model_url = "https://bj.bcebos.com/fastdeploy/models/mobilenetv2.tgz"
fd.download_and_decompress(model_url, path=".")
2. Backend Configuration
option = fd.RuntimeOption()
option.set_model_path("mobilenetv2/inference.pdmodel",
"mobilenetv2/inference.pdiparams")
# **** CPU Configuration ****
option.use_cpu()
option.use_ort_backend()
option.set_cpu_thread_num(12)
# Initialise runtime
runtime = fd.Runtime(option)
# Get model input name
input_name = runtime.get_input_info(0).name
# Constructing random data for inference
results = runtime.infer({
input_name: np.random.rand(1, 3, 224, 224).astype("float32")
})
print(results[0].shape)
When loading is complete, you will get the following output information indicating the initialized backend and the hardware devices.
[INFO] fastdeploy/fastdeploy_runtime.cc(283)::Init Runtime initialized with Backend::OrtBackend in device Device::CPU.