mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 00:33:03 +08:00

Some checks failed
Deploy GitHub Pages / deploy (push) Has been cancelled
* refactor rl get_name_mappings_to_training * fix tp>1 * change variable name(ffn1->up_gate_proj/ffn2->down_proj) * change variable name(linear_weight->weight/linear_bias->bias) * add rl names mapping for vl * fix ernie 0.3B error * fix develop code * fix
218 lines
7.6 KiB
Python
218 lines
7.6 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import paddle
|
|
import paddle.nn.functional as F
|
|
from paddle import nn
|
|
from paddle.distributed import fleet
|
|
from paddle.distributed.fleet.meta_parallel import (ColumnParallelLinear,
|
|
VocabParallelEmbedding)
|
|
from paddleformers.utils.log import logger
|
|
|
|
from .utils import get_tensor
|
|
|
|
|
|
class ResBlock(nn.Layer):
|
|
"""
|
|
A Residual Block module.
|
|
|
|
This module performs a linear transformation followed by a SiLU activation,
|
|
and then adds the result to the original input, creating a residual connection.
|
|
|
|
Args:
|
|
hidden_size (int): The size of the hidden layers in the block.
|
|
"""
|
|
|
|
def __init__(self, hidden_size, num_condition=0):
|
|
super().__init__()
|
|
self.linear = nn.Linear(hidden_size * (num_condition + 1), hidden_size)
|
|
if num_condition > 0:
|
|
self.res_connection = nn.Linear(
|
|
hidden_size * (num_condition + 1), hidden_size
|
|
)
|
|
else:
|
|
self.res_connection = nn.Identity()
|
|
# Initialize as an identity mapping
|
|
# _no_grad_fill_(self.linear.weight, 0)
|
|
# Use SiLU activation to keep consistent with the Llama model
|
|
self.act = nn.Silu()
|
|
|
|
@paddle.no_grad()
|
|
def forward(self, x):
|
|
"""
|
|
Forward pass of the ResBlock.
|
|
|
|
Args:
|
|
x (paddle.Tensor): Input tensor.
|
|
|
|
Returns:
|
|
paddle.Tensor: Output after the residual connection and activation.
|
|
"""
|
|
return self.res_connection(x) + self.act(self.linear(x))
|
|
|
|
|
|
class HydraHead(nn.Layer):
|
|
"""
|
|
A Hydra Head module.
|
|
|
|
This module performs multi hydra head layers,
|
|
each of which is a hydra_lm_head followed by a head
|
|
|
|
Args:
|
|
hydra_num_heads (int): The number of hyhra heads.
|
|
hydra_num_layers (int): The number of layers.
|
|
hidden_size (int): The size of the hidden layers in the block.
|
|
tensor_parallel_degree(int): TP degree.
|
|
vocab_size (int): The size of vocabulary.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
hydra_num_heads,
|
|
hydra_num_layers,
|
|
hidden_size,
|
|
tensor_parallel_degree,
|
|
vocab_size,
|
|
):
|
|
super().__init__()
|
|
self.hydra_num_heads = hydra_num_heads
|
|
self.hydra_num_layers = hydra_num_layers
|
|
self.hidden_size = hidden_size
|
|
self.tensor_parallel_degree = tensor_parallel_degree
|
|
self.vocab_size = vocab_size
|
|
|
|
self.hydra_mlp = nn.LayerList(
|
|
[
|
|
nn.Sequential(
|
|
ResBlock(self.hidden_size, hydra_head_idx + 1),
|
|
*([ResBlock(self.hidden_size)] * (self.hydra_num_layers - 1)),
|
|
)
|
|
for hydra_head_idx in range(self.hydra_num_heads)
|
|
]
|
|
)
|
|
|
|
if self.tensor_parallel_degree > 1:
|
|
self.hydra_lm_head = nn.LayerList(
|
|
[
|
|
ColumnParallelLinear(
|
|
self.hidden_size,
|
|
self.vocab_size,
|
|
weight_attr=paddle.ParamAttr(
|
|
initializer=nn.initializer.Normal(mean=0.0, std=0.0)
|
|
),
|
|
gather_output=True,
|
|
has_bias=False,
|
|
)
|
|
for _ in range(self.hydra_num_heads)
|
|
]
|
|
)
|
|
else:
|
|
self.hydra_lm_head = nn.LayerList(
|
|
[
|
|
nn.Linear(self.hidden_size, self.vocab_size, bias_attr=False)
|
|
for _ in range(self.hydra_num_heads)
|
|
]
|
|
)
|
|
|
|
self.embeddings = VocabParallelEmbedding(
|
|
vocab_size,
|
|
hidden_size,
|
|
mp_group=fleet.get_hybrid_communicate_group().get_model_parallel_group(),
|
|
weight_attr=paddle.ParamAttr(initializer=nn.initializer.Normal(mean=0.0)),
|
|
)
|
|
|
|
def custom_set_state_dict(self, state_dict):
|
|
"""
|
|
Load Parameter of Hydra Head from state_dict with custom names.
|
|
|
|
Args:
|
|
state_dict (dict): KV pair of name and parameters.
|
|
"""
|
|
for hydra_head_idx in range(self.hydra_num_heads):
|
|
self.hydra_mlp[hydra_head_idx][0].res_connection.weight.set_value(
|
|
get_tensor(
|
|
state_dict.pop(f"0.{hydra_head_idx}.0.res_connection.weight")
|
|
)
|
|
)
|
|
self.hydra_mlp[hydra_head_idx][0].res_connection.bias.set_value(
|
|
get_tensor(state_dict.pop(f"0.{hydra_head_idx}.0.res_connection.bias"))
|
|
)
|
|
|
|
for layer_idx in range(self.hydra_num_layers):
|
|
self.hydra_mlp[hydra_head_idx][layer_idx].linear.weight.set_value(
|
|
get_tensor(
|
|
state_dict.pop(f"0.{hydra_head_idx}.{layer_idx}.linear.weight")
|
|
)
|
|
)
|
|
self.hydra_mlp[hydra_head_idx][layer_idx].linear.bias.set_value(
|
|
get_tensor(
|
|
state_dict.pop(f"0.{hydra_head_idx}.{layer_idx}.linear.bias")
|
|
)
|
|
)
|
|
|
|
self.hydra_lm_head[hydra_head_idx].weight.set_value(
|
|
get_tensor(state_dict.pop(f"1.{hydra_head_idx}.weight"))
|
|
)
|
|
|
|
self.embeddings.weight.set_value(
|
|
get_tensor(state_dict.pop("embeddings.weight"))
|
|
)
|
|
|
|
def set_state_dict(self, state_dict):
|
|
"""
|
|
Load Parameter of Hydra Head from state_dict.
|
|
|
|
Args:
|
|
state_dict (dict): KV pair of name and parameters.
|
|
"""
|
|
is_custom = True
|
|
for key in state_dict.keys():
|
|
if key != "embeddings.weight" and (
|
|
"hydra_mlp" in key or "hydra_head" in key
|
|
):
|
|
is_custom = False
|
|
break
|
|
|
|
if is_custom:
|
|
logger.info("Hydra use custom set_state_dict")
|
|
self.custom_set_state_dict(state_dict)
|
|
else:
|
|
logger.info("Hydra use default set_state_dict")
|
|
super().set_state_dict(state_dict)
|
|
|
|
@paddle.no_grad()
|
|
def forward(self, input_ids, hidden_states, next_tokens):
|
|
"""
|
|
Forward pass of Hydra Head
|
|
|
|
Args:
|
|
input_ids: [batch_size, 1] The tokens sampled by the previous head go through the embedding,
|
|
starting with the last accept token
|
|
hidden_states: [batch_size, hidden_size] The hidden_states of the last accept_tokens
|
|
"""
|
|
hydra_inputs = [hidden_states]
|
|
input_embeds = self.embeddings(input_ids)
|
|
for hydra_head_idx in range(self.hydra_num_heads):
|
|
hydra_inputs.append(input_embeds)
|
|
head_input = paddle.concat(hydra_inputs, axis=-1)
|
|
hidden_states = self.hydra_mlp[hydra_head_idx](head_input)
|
|
logits = self.hydra_lm_head[hydra_head_idx](hidden_states)
|
|
probs = F.softmax(logits)
|
|
_, topk_tokens = paddle.topk(probs, k=1, axis=-1)
|
|
next_tokens[:, 1 + hydra_head_idx : 2 + hydra_head_idx] = topk_tokens[:]
|
|
|
|
input_embeds = self.embeddings(next_tokens[:, 1 + hydra_head_idx])
|