Files
FastDeploy/fastdeploy/vision/ocr/ppocr/rec_postprocessor.cc
Thomas Young 5df62485c3 [Bug Fix] add ocr new feature and fix codestyle (#764)
* fix ocr bug and add new feature

* fix bug

* fix bug

* fix bug

* fix bug

* fix bug

* fix bug

* add property

* add test

* fix code style

* fix bug

* fix bug

* fix bug

* fix port

* fix ocr

* fix_ocr

* fix ocr

* fix ocr

* fix ocr

* fix ocr

* Update paddle2onnx.cmake

* Update paddle2onnx.cmake

* Update paddle2onnx.cmake

Co-authored-by: Jason <jiangjiajun@baidu.com>
Co-authored-by: Jason <928090362@qq.com>
2022-12-07 19:31:54 +08:00

142 lines
4.9 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/ocr/ppocr/rec_postprocessor.h"
#include "fastdeploy/utils/perf.h"
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h"
namespace fastdeploy {
namespace vision {
namespace ocr {
std::vector<std::string> ReadDict(const std::string& path) {
std::ifstream in(path);
FDASSERT(in, "Cannot open file %s to read.", path.c_str());
std::string line;
std::vector<std::string> m_vec;
while (getline(in, line)) {
m_vec.push_back(line);
}
m_vec.insert(m_vec.begin(), "#"); // blank char for ctc
m_vec.push_back(" ");
return m_vec;
}
RecognizerPostprocessor::RecognizerPostprocessor(){
initialized_ = false;
}
RecognizerPostprocessor::RecognizerPostprocessor(const std::string& label_path) {
// init label_lsit
label_list_ = ReadDict(label_path);
initialized_ = true;
}
bool RecognizerPostprocessor::SingleBatchPostprocessor(const float* out_data,
const std::vector<int64_t>& output_shape,
std::string* text, float* rec_score) {
std::string& str_res = *text;
float& score = *rec_score;
score = 0.f;
int argmax_idx;
int last_index = 0;
int count = 0;
float max_value = 0.0f;
for (int n = 0; n < output_shape[1]; n++) {
argmax_idx = int(
std::distance(&out_data[n * output_shape[2]],
std::max_element(&out_data[n * output_shape[2]],
&out_data[(n + 1) * output_shape[2]])));
max_value = float(*std::max_element(&out_data[n * output_shape[2]],
&out_data[(n + 1) * output_shape[2]]));
if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
score += max_value;
count += 1;
if(argmax_idx > label_list_.size()) {
FDERROR << "The output index: " << argmax_idx << " is larger than the size of label_list: "
<< label_list_.size() << ". Please check the label file!" << std::endl;
return false;
}
str_res += label_list_[argmax_idx];
}
last_index = argmax_idx;
}
score /= (count + 1e-6);
if (count == 0 || std::isnan(score)) {
score = 0.f;
}
return true;
}
bool RecognizerPostprocessor::Run(const std::vector<FDTensor>& tensors,
std::vector<std::string>* texts, std::vector<float>* rec_scores) {
// Recognizer have only 1 output tensor.
// For Recognizer, the output tensor shape = [batch, ?, 6625]
size_t total_size = tensors[0].shape[0];
return Run(tensors, texts, rec_scores, 0, total_size, {});
}
bool RecognizerPostprocessor::Run(const std::vector<FDTensor>& tensors,
std::vector<std::string>* texts, std::vector<float>* rec_scores,
size_t start_index, size_t total_size, const std::vector<int>& indices) {
if (!initialized_) {
FDERROR << "Postprocessor is not initialized." << std::endl;
return false;
}
// Recognizer have only 1 output tensor.
const FDTensor& tensor = tensors[0];
// For Recognizer, the output tensor shape = [batch, ?, 6625]
size_t batch = tensor.shape[0];
size_t length = accumulate(tensor.shape.begin()+1, tensor.shape.end(), 1, std::multiplies<int>());
if (batch <= 0) {
FDERROR << "The infer outputTensor.shape[0] <=0, wrong infer result." << std::endl;
return false;
}
if (start_index < 0 || total_size <= 0) {
FDERROR << "start_index or total_size error. Correct is: 0 <= start_index < total_size" << std::endl;
return false;
}
if ((start_index + batch) > total_size) {
FDERROR << "start_index or total_size error. Correct is: start_index + batch(outputTensor.shape[0]) <= total_size" << std::endl;
return false;
}
texts->resize(total_size);
rec_scores->resize(total_size);
const float* tensor_data = reinterpret_cast<const float*>(tensor.Data());
for (int i_batch = 0; i_batch < batch; ++i_batch) {
size_t real_index = i_batch+start_index;
if (indices.size() != 0) {
real_index = indices[i_batch+start_index];
}
if(!SingleBatchPostprocessor(tensor_data + i_batch * length,
tensor.shape,
&texts->at(real_index),
&rec_scores->at(real_index))) {
return false;
}
}
return true;
}
} // namespace ocr
} // namespace vision
} // namespace fastdeploy