mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* fix ocr bug and add new feature * fix bug * fix bug * fix bug * fix bug * fix bug * fix bug * add property * add test * fix code style * fix bug * fix bug * fix bug * fix port * fix ocr * fix_ocr * fix ocr * fix ocr * fix ocr * fix ocr * Update paddle2onnx.cmake * Update paddle2onnx.cmake * Update paddle2onnx.cmake Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: Jason <928090362@qq.com>
142 lines
4.9 KiB
C++
142 lines
4.9 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/ocr/ppocr/rec_postprocessor.h"
|
|
#include "fastdeploy/utils/perf.h"
|
|
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace ocr {
|
|
|
|
std::vector<std::string> ReadDict(const std::string& path) {
|
|
std::ifstream in(path);
|
|
FDASSERT(in, "Cannot open file %s to read.", path.c_str());
|
|
std::string line;
|
|
std::vector<std::string> m_vec;
|
|
while (getline(in, line)) {
|
|
m_vec.push_back(line);
|
|
}
|
|
m_vec.insert(m_vec.begin(), "#"); // blank char for ctc
|
|
m_vec.push_back(" ");
|
|
return m_vec;
|
|
}
|
|
|
|
RecognizerPostprocessor::RecognizerPostprocessor(){
|
|
initialized_ = false;
|
|
}
|
|
|
|
RecognizerPostprocessor::RecognizerPostprocessor(const std::string& label_path) {
|
|
// init label_lsit
|
|
label_list_ = ReadDict(label_path);
|
|
initialized_ = true;
|
|
}
|
|
|
|
bool RecognizerPostprocessor::SingleBatchPostprocessor(const float* out_data,
|
|
const std::vector<int64_t>& output_shape,
|
|
std::string* text, float* rec_score) {
|
|
std::string& str_res = *text;
|
|
float& score = *rec_score;
|
|
score = 0.f;
|
|
int argmax_idx;
|
|
int last_index = 0;
|
|
int count = 0;
|
|
float max_value = 0.0f;
|
|
|
|
for (int n = 0; n < output_shape[1]; n++) {
|
|
argmax_idx = int(
|
|
std::distance(&out_data[n * output_shape[2]],
|
|
std::max_element(&out_data[n * output_shape[2]],
|
|
&out_data[(n + 1) * output_shape[2]])));
|
|
|
|
max_value = float(*std::max_element(&out_data[n * output_shape[2]],
|
|
&out_data[(n + 1) * output_shape[2]]));
|
|
|
|
if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
|
|
score += max_value;
|
|
count += 1;
|
|
if(argmax_idx > label_list_.size()) {
|
|
FDERROR << "The output index: " << argmax_idx << " is larger than the size of label_list: "
|
|
<< label_list_.size() << ". Please check the label file!" << std::endl;
|
|
return false;
|
|
}
|
|
str_res += label_list_[argmax_idx];
|
|
}
|
|
last_index = argmax_idx;
|
|
}
|
|
score /= (count + 1e-6);
|
|
if (count == 0 || std::isnan(score)) {
|
|
score = 0.f;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool RecognizerPostprocessor::Run(const std::vector<FDTensor>& tensors,
|
|
std::vector<std::string>* texts, std::vector<float>* rec_scores) {
|
|
// Recognizer have only 1 output tensor.
|
|
// For Recognizer, the output tensor shape = [batch, ?, 6625]
|
|
size_t total_size = tensors[0].shape[0];
|
|
return Run(tensors, texts, rec_scores, 0, total_size, {});
|
|
}
|
|
|
|
bool RecognizerPostprocessor::Run(const std::vector<FDTensor>& tensors,
|
|
std::vector<std::string>* texts, std::vector<float>* rec_scores,
|
|
size_t start_index, size_t total_size, const std::vector<int>& indices) {
|
|
if (!initialized_) {
|
|
FDERROR << "Postprocessor is not initialized." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
// Recognizer have only 1 output tensor.
|
|
const FDTensor& tensor = tensors[0];
|
|
// For Recognizer, the output tensor shape = [batch, ?, 6625]
|
|
size_t batch = tensor.shape[0];
|
|
size_t length = accumulate(tensor.shape.begin()+1, tensor.shape.end(), 1, std::multiplies<int>());
|
|
|
|
if (batch <= 0) {
|
|
FDERROR << "The infer outputTensor.shape[0] <=0, wrong infer result." << std::endl;
|
|
return false;
|
|
}
|
|
if (start_index < 0 || total_size <= 0) {
|
|
FDERROR << "start_index or total_size error. Correct is: 0 <= start_index < total_size" << std::endl;
|
|
return false;
|
|
}
|
|
if ((start_index + batch) > total_size) {
|
|
FDERROR << "start_index or total_size error. Correct is: start_index + batch(outputTensor.shape[0]) <= total_size" << std::endl;
|
|
return false;
|
|
}
|
|
texts->resize(total_size);
|
|
rec_scores->resize(total_size);
|
|
|
|
const float* tensor_data = reinterpret_cast<const float*>(tensor.Data());
|
|
for (int i_batch = 0; i_batch < batch; ++i_batch) {
|
|
size_t real_index = i_batch+start_index;
|
|
if (indices.size() != 0) {
|
|
real_index = indices[i_batch+start_index];
|
|
}
|
|
if(!SingleBatchPostprocessor(tensor_data + i_batch * length,
|
|
tensor.shape,
|
|
&texts->at(real_index),
|
|
&rec_scores->at(real_index))) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
} // namespace ocr
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|