Files
FastDeploy/fastdeploy/vision/ocr/ppocr/classifier.h
Thomas Young 5df62485c3 [Bug Fix] add ocr new feature and fix codestyle (#764)
* fix ocr bug and add new feature

* fix bug

* fix bug

* fix bug

* fix bug

* fix bug

* fix bug

* add property

* add test

* fix code style

* fix bug

* fix bug

* fix bug

* fix port

* fix ocr

* fix_ocr

* fix ocr

* fix ocr

* fix ocr

* fix ocr

* Update paddle2onnx.cmake

* Update paddle2onnx.cmake

* Update paddle2onnx.cmake

Co-authored-by: Jason <jiangjiajun@baidu.com>
Co-authored-by: Jason <928090362@qq.com>
2022-12-07 19:31:54 +08:00

71 lines
3.2 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_postprocess_op.h"
#include "fastdeploy/vision/ocr/ppocr/cls_postprocessor.h"
#include "fastdeploy/vision/ocr/ppocr/cls_preprocessor.h"
namespace fastdeploy {
namespace vision {
/** \brief All OCR series model APIs are defined inside this namespace
*
*/
namespace ocr {
/*! @brief Classifier object is used to load the classification model provided by PaddleOCR.
*/
class FASTDEPLOY_DECL Classifier : public FastDeployModel {
public:
Classifier();
/** \brief Set path of model file, and the configuration of runtime
*
* \param[in] model_file Path of model file, e.g ./ch_ppocr_mobile_v2.0_cls_infer/model.pdmodel.
* \param[in] params_file Path of parameter file, e.g ./ch_ppocr_mobile_v2.0_cls_infer/model.pdiparams, if the model format is ONNX, this parameter will be ignored.
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`.
* \param[in] model_format Model format of the loaded model, default is Paddle format.
*/
Classifier(const std::string& model_file, const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE);
/// Get model's name
std::string ModelName() const { return "ppocr/ocr_cls"; }
virtual bool Predict(cv::Mat& img, int32_t* cls_label, float* cls_score);
/** \brief BatchPredict the input image and get OCR classification model cls_result.
*
* \param[in] images The list of input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
* \param[in] cls_results The output of OCR classification model cls_result will be writen to this structure.
* \return true if the prediction is successed, otherwise false.
*/
virtual bool BatchPredict(const std::vector<cv::Mat>& images,
std::vector<int32_t>* cls_labels,
std::vector<float>* cls_scores);
virtual bool BatchPredict(const std::vector<cv::Mat>& images,
std::vector<int32_t>* cls_labels,
std::vector<float>* cls_scores,
size_t start_index, size_t end_index);
ClassifierPreprocessor preprocessor_;
ClassifierPostprocessor postprocessor_;
private:
bool Initialize();
};
} // namespace ocr
} // namespace vision
} // namespace fastdeploy