Files
FastDeploy/examples/vision/classification/paddleclas/python/infer.py
yeliang2258 5be839b322 [Backend] Add KunlunXin XPU deploy support (#747)
* add xpu support

* fix docs

* update code

* update doc

* update code

* update yolov5

* update cmake

* add int64_t data support

* fix

* update download links

* add en doc

* update code

* update xpu options

* update doc

* update doc

* update doc

* update lib links

* update doc

* update code

* update lite xpu link

* update xpu lib

* update doc

* update en doc
2022-12-15 21:17:14 +08:00

61 lines
1.6 KiB
Python
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model", required=True, help="Path of PaddleClas model.")
parser.add_argument(
"--image", type=str, required=True, help="Path of test image file.")
parser.add_argument(
"--topk", type=int, default=1, help="Return topk results.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu' or 'gpu' or 'ipu'.")
parser.add_argument(
"--use_trt",
type=ast.literal_eval,
default=False,
help="Wether to use tensorrt.")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu()
if args.device.lower() == "ipu":
option.use_ipu()
if args.device.lower() == "xpu":
option.use_xpu()
if args.use_trt:
option.use_trt_backend()
return option
args = parse_arguments()
# 配置runtime加载模型
runtime_option = build_option(args)
model_file = os.path.join(args.model, "inference.pdmodel")
params_file = os.path.join(args.model, "inference.pdiparams")
config_file = os.path.join(args.model, "inference_cls.yaml")
model = fd.vision.classification.PaddleClasModel(
model_file, params_file, config_file, runtime_option=runtime_option)
# 预测图片分类结果
im = cv2.imread(args.image)
result = model.predict(im, args.topk)
print(result)