Files
FastDeploy/examples/vision/segmentation/paddleseg/semantic_segmentation/cpu-gpu/python/infer.py
DefTruth 5b143219ce [Docs] Pick seg fastdeploy docs from PaddleSeg (#1482)
* [Docs] Pick seg fastdeploy docs from PaddleSeg

* [Docs] update seg docs

* [Docs] Add c&csharp examples for seg

* [Docs] Add c&csharp examples for seg

* [Doc] Update paddleseg README.md

* Update README.md
2023-03-17 11:22:46 +08:00

62 lines
1.7 KiB
Python
Executable File

import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model", required=True, help="Path of PaddleSeg model.")
parser.add_argument(
"--image", type=str, required=True, help="Path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'kunlunxin', 'cpu' or 'gpu'.")
parser.add_argument(
"--use_trt",
type=ast.literal_eval,
default=False,
help="Wether to use tensorrt.")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu()
if args.use_trt:
option.use_trt_backend()
# If use original Tensorrt, not Paddle-TensorRT,
# comment the following two lines
option.enable_paddle_to_trt()
option.enable_paddle_trt_collect_shape()
option.set_trt_input_shape("x", [1, 3, 256, 256], [1, 3, 1024, 1024],
[1, 3, 2048, 2048])
return option
args = parse_arguments()
# settting for runtime
runtime_option = build_option(args)
model_file = os.path.join(args.model, "model.pdmodel")
params_file = os.path.join(args.model, "model.pdiparams")
config_file = os.path.join(args.model, "deploy.yaml")
model = fd.vision.segmentation.PaddleSegModel(
model_file, params_file, config_file, runtime_option=runtime_option)
# predict
im = cv2.imread(args.image)
result = model.predict(im)
print(result)
# visualize
vis_im = fd.vision.vis_segmentation(im, result, weight=0.5)
cv2.imwrite("vis_img.png", vis_im)