mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	 9e20dab0d6
			
		
	
	9e20dab0d6
	
	
	
		
			
			* fix infer.py and README * [Example] Merge Download Paddle Model, Paddle->Onnx->Mlir->Bmodel and inference into infer.py. Modify README.md * modify pp_liteseg sophgo infer.py and README.md * fix PPOCR,PPYOLOE,PICODET,LITESEG sophgo infer.py and README.md * fix memory overflow problem while inferring with sophgo backend * fix memory overflow problem while inferring with sophgo backend --------- Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: xuyizhou <yizhou.xu@sophgo.com>
		
			
				
	
	
		
			308 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			308 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import fastdeploy as fd
 | ||
| import cv2
 | ||
| import os
 | ||
| from subprocess import run
 | ||
| 
 | ||
| 
 | ||
| def parse_arguments():
 | ||
|     import argparse
 | ||
|     import ast
 | ||
|     parser = argparse.ArgumentParser()
 | ||
|     parser.add_argument(
 | ||
|         "--auto", required=True, help="Auto download, convert, compile and infer if True")
 | ||
|     parser.add_argument(
 | ||
|         "--det_model", required=True, help="Path of Detection model of PPOCR.")
 | ||
|     parser.add_argument(
 | ||
|         "--cls_model",
 | ||
|         required=True,
 | ||
|         help="Path of Classification model of PPOCR.")
 | ||
|     parser.add_argument(
 | ||
|         "--rec_model",
 | ||
|         required=True,
 | ||
|         help="Path of Recognization model of PPOCR.")
 | ||
|     parser.add_argument(
 | ||
|         "--rec_label_file",
 | ||
|         required=True,
 | ||
|         help="Path of Recognization label of PPOCR.")
 | ||
|     parser.add_argument(
 | ||
|         "--image", type=str, required=True, help="Path of test image file.")
 | ||
| 
 | ||
|     return parser.parse_args()
 | ||
| 
 | ||
| 
 | ||
| def getPPOCRv3():
 | ||
|     cmd_str_det = 'wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar'
 | ||
|     tar_str_det = 'tar xvf ch_PP-OCRv3_det_infer.tar'
 | ||
|     cmd_str_cls = 'wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar'
 | ||
|     tar_str_cls = 'tar xvf ch_ppocr_mobile_v2.0_cls_infer.tar'
 | ||
|     cmd_str_rec = 'wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar'
 | ||
|     tar_str_rec = 'tar xvf ch_PP-OCRv3_rec_infer.tar'
 | ||
|     cmd_str_img = 'wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/doc/imgs/12.jpg'
 | ||
|     cmd_str_label = 'wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/ppocr/utils/ppocr_keys_v1.txt'
 | ||
|     script_str = 'wget https://raw.githubusercontent.com/PaddlePaddle/Paddle2ONNX/develop/tools/paddle/paddle_infer_shape.py'
 | ||
|     if not os.path.exists('ch_PP-OCRv3_det_infer.tar'):
 | ||
|         print(cmd_str_det, tar_str_det)
 | ||
|         run(cmd_str_det, shell=True)
 | ||
|         run(tar_str_det, shell=True)
 | ||
|     if not os.path.exists('ch_ppocr_mobile_v2.0_cls_infer.tar'):
 | ||
|         print(cmd_str_cls, tar_str_cls)
 | ||
|         run(cmd_str_cls, shell=True)
 | ||
|         run(tar_str_cls, shell=True)
 | ||
|     if not os.path.exists('ch_PP-OCRv3_rec_infer.tar'):
 | ||
|         print(cmd_str_rec, tar_str_rec)
 | ||
|         run(cmd_str_rec, shell=True)
 | ||
|         run(tar_str_rec, shell=True)
 | ||
|     if not os.path.exists('12.jpg'):
 | ||
|         print(cmd_str_img)
 | ||
|         run(cmd_str_img, shell=True)
 | ||
|     if not os.path.exists('ppocr_keys_v1.txt'):
 | ||
|         print(cmd_str_label)
 | ||
|         run(cmd_str_label, shell=True)
 | ||
|     if not os.path.exists('paddle_infer_shape.py'):
 | ||
|         print(script_str)
 | ||
|         run(script_str, shell=True)
 | ||
| 
 | ||
| def fix_input_shape():
 | ||
|     fix_det_str = 'python paddle_infer_shape.py --model_dir ch_PP-OCRv3_det_infer \
 | ||
|                     --model_filename inference.pdmodel \
 | ||
|                     --params_filename inference.pdiparams \
 | ||
|                     --save_dir ch_PP-OCRv3_det_infer_fix \
 | ||
|                     --input_shape_dict="{\'x\':[1,3,960,608]}"'
 | ||
|     fix_rec_str = 'python paddle_infer_shape.py --model_dir ch_PP-OCRv3_rec_infer \
 | ||
|                     --model_filename inference.pdmodel \
 | ||
|                     --params_filename inference.pdiparams \
 | ||
|                     --save_dir ch_PP-OCRv3_rec_infer_fix \
 | ||
|                     --input_shape_dict="{\'x\':[1,3,48,320]}"'
 | ||
|     fix_cls_str = 'python paddle_infer_shape.py --model_dir ch_ppocr_mobile_v2.0_cls_infer \
 | ||
|                     --model_filename inference.pdmodel \
 | ||
|                     --params_filename inference.pdiparams \
 | ||
|                     --save_dir ch_PP-OCRv3_cls_infer_fix \
 | ||
|                     --input_shape_dict="{\'x\':[1,3,48,192]}"'
 | ||
|     print(fix_det_str)
 | ||
|     run(fix_det_str, shell=True)
 | ||
|     print(fix_rec_str)
 | ||
|     run(fix_rec_str, shell=True)
 | ||
|     print(fix_cls_str)
 | ||
|     run(fix_cls_str, shell=True)
 | ||
| 
 | ||
| 
 | ||
| def paddle2onnx():
 | ||
|     cmd_str_det = 'paddle2onnx --model_dir ch_PP-OCRv3_det_infer_fix \
 | ||
|             --model_filename inference.pdmodel \
 | ||
|             --params_filename inference.pdiparams \
 | ||
|             --save_file ch_PP-OCRv3_det_infer.onnx \
 | ||
|             --enable_dev_version True'
 | ||
|     cmd_str_cls = 'paddle2onnx --model_dir ch_PP-OCRv3_cls_infer_fix \
 | ||
|             --model_filename inference.pdmodel \
 | ||
|             --params_filename inference.pdiparams \
 | ||
|             --save_file ch_PP-OCRv3_cls_infer.onnx \
 | ||
|             --enable_dev_version True'
 | ||
|     cmd_str_rec = 'paddle2onnx --model_dir ch_PP-OCRv3_rec_infer_fix \
 | ||
|             --model_filename inference.pdmodel \
 | ||
|             --params_filename inference.pdiparams \
 | ||
|             --save_file ch_PP-OCRv3_rec_infer.onnx \
 | ||
|             --enable_dev_version True'
 | ||
|     print(cmd_str_det)
 | ||
|     run(cmd_str_det, shell=True)
 | ||
|     print(cmd_str_cls)
 | ||
|     run(cmd_str_cls, shell=True)
 | ||
|     print(cmd_str_rec)
 | ||
|     run(cmd_str_rec, shell=True)
 | ||
| 
 | ||
| def mlir_prepare():
 | ||
|     mlir_path = os.getenv("MODEL_ZOO_PATH")
 | ||
|     mlir_path = mlir_path[:-13]
 | ||
|     regression_path = os.path.join(mlir_path, 'regression')
 | ||
|     mv_str_list = ['mkdir ch_PP-OCRv3', 
 | ||
|                 'cp -rf ' + os.path.join(regression_path, 'dataset/COCO2017/') + ' ./ch_PP-OCRv3', 
 | ||
|                 'cp -rf ' + os.path.join(regression_path, 'image/') + ' ./ch_PP-OCRv3',
 | ||
|                 'mv ch_PP-OCRv3_det_infer.onnx ./ch_PP-OCRv3',
 | ||
|                 'mv ch_PP-OCRv3_rec_infer.onnx ./ch_PP-OCRv3',
 | ||
|                 'mv ch_PP-OCRv3_cls_infer.onnx ./ch_PP-OCRv3',
 | ||
|                 'mkdir ./ch_PP-OCRv3/workspace']
 | ||
|     for str in mv_str_list:
 | ||
|         print(str)
 | ||
|         run(str, shell=True)
 | ||
| 
 | ||
| 
 | ||
| def onnx2mlir():
 | ||
|     transform_str_det = 'model_transform.py \
 | ||
|         --model_name ch_PP-OCRv3_det \
 | ||
|         --model_def ../ch_PP-OCRv3_det_infer.onnx \
 | ||
|         --input_shapes [[1,3,960,608]] \
 | ||
|         --mean 0.0,0.0,0.0 \
 | ||
|         --scale 0.0039216,0.0039216,0.0039216 \
 | ||
|         --keep_aspect_ratio \
 | ||
|         --pixel_format rgb \
 | ||
|         --output_names sigmoid_0.tmp_0 \
 | ||
|         --test_input ../image/dog.jpg \
 | ||
|         --test_result ch_PP-OCRv3_det_top_outputs.npz \
 | ||
|         --mlir ./ch_PP-OCRv3_det.mlir'
 | ||
|     transform_str_rec = 'model_transform.py \
 | ||
|         --model_name ch_PP-OCRv3_rec \
 | ||
|         --model_def ../ch_PP-OCRv3_rec_infer.onnx \
 | ||
|         --input_shapes [[1,3,48,320]] \
 | ||
|         --mean 0.0,0.0,0.0 \
 | ||
|         --scale 0.0039216,0.0039216,0.0039216 \
 | ||
|         --keep_aspect_ratio \
 | ||
|         --pixel_format rgb \
 | ||
|         --output_names softmax_5.tmp_0 \
 | ||
|         --test_input ../image/dog.jpg \
 | ||
|         --test_result ch_PP-OCRv3_rec_top_outputs.npz \
 | ||
|         --mlir ./ch_PP-OCRv3_rec.mlir'
 | ||
|     transform_str_cls = 'model_transform.py \
 | ||
|         --model_name ch_PP-OCRv3_cls \
 | ||
|         --model_def ../ch_PP-OCRv3_cls_infer.onnx \
 | ||
|         --input_shapes [[1,3,48,192]] \
 | ||
|         --mean 0.0,0.0,0.0 \
 | ||
|         --scale 0.0039216,0.0039216,0.0039216 \
 | ||
|         --keep_aspect_ratio \
 | ||
|         --pixel_format rgb \
 | ||
|         --output_names softmax_0.tmp_0 \
 | ||
|         --test_input ../image/dog.jpg \
 | ||
|         --test_result ch_PP-OCRv3_cls_top_outputs.npz \
 | ||
|         --mlir ./ch_PP-OCRv3_cls.mlir'
 | ||
| 
 | ||
|     os.chdir('./ch_PP-OCRv3/workspace/')
 | ||
| 
 | ||
|     print(transform_str_det)
 | ||
|     run(transform_str_det, shell=True)
 | ||
| 
 | ||
|     print(transform_str_rec)
 | ||
|     run(transform_str_rec, shell=True)
 | ||
| 
 | ||
|     print(transform_str_cls)
 | ||
|     run(transform_str_cls, shell=True)
 | ||
| 
 | ||
|     os.chdir('../../')
 | ||
| 
 | ||
| def mlir2bmodel():
 | ||
|     det_str = 'model_deploy.py \
 | ||
|         --mlir ./ch_PP-OCRv3_det.mlir \
 | ||
|         --quantize F32 \
 | ||
|         --chip bm1684x \
 | ||
|         --test_input ./ch_PP-OCRv3_det_in_f32.npz \
 | ||
|         --test_reference ./ch_PP-OCRv3_det_top_outputs.npz \
 | ||
|         --model ./ch_PP-OCRv3_det_1684x_f32.bmodel'
 | ||
|     rec_str = 'model_deploy.py \
 | ||
|         --mlir ./ch_PP-OCRv3_rec.mlir \
 | ||
|         --quantize F32 \
 | ||
|         --chip bm1684x \
 | ||
|         --test_input ./ch_PP-OCRv3_rec_in_f32.npz \
 | ||
|         --test_reference ./ch_PP-OCRv3_rec_top_outputs.npz \
 | ||
|         --model ./ch_PP-OCRv3_rec_1684x_f32.bmodel'
 | ||
|     cls_str = 'model_deploy.py \
 | ||
|         --mlir ./ch_PP-OCRv3_cls.mlir \
 | ||
|         --quantize F32 \
 | ||
|         --chip bm1684x \
 | ||
|         --test_input ./ch_PP-OCRv3_cls_in_f32.npz \
 | ||
|         --test_reference ./ch_PP-OCRv3_cls_top_outputs.npz \
 | ||
|         --model ./ch_PP-OCRv3_cls_1684x_f32.bmodel'
 | ||
|     os.chdir('./ch_PP-OCRv3/workspace/')
 | ||
|     print(det_str)
 | ||
|     run(det_str, shell=True)
 | ||
| 
 | ||
|     print(rec_str)
 | ||
|     run(rec_str, shell=True)
 | ||
| 
 | ||
|     print(cls_str)
 | ||
|     run(cls_str, shell=True)
 | ||
|     os.chdir('../../')
 | ||
| 
 | ||
| args = parse_arguments()
 | ||
| 
 | ||
| if (args.auto):
 | ||
|     getPPOCRv3()
 | ||
|     fix_input_shape()
 | ||
|     paddle2onnx()
 | ||
|     mlir_prepare()
 | ||
|     onnx2mlir()
 | ||
|     mlir2bmodel()
 | ||
| 
 | ||
| # 配置runtime,加载模型
 | ||
| runtime_option = fd.RuntimeOption()
 | ||
| runtime_option.use_sophgo()
 | ||
| 
 | ||
| # Detection模型, 检测文字框
 | ||
| det_model_file = './ch_PP-OCRv3/workspace/ch_PP-OCRv3_det_1684x_f32.bmodel' if args.auto else args.det_model
 | ||
| det_params_file = ""
 | ||
| # Classification模型,方向分类,可选
 | ||
| cls_model_file = './ch_PP-OCRv3/workspace/ch_PP-OCRv3_cls_1684x_f32.bmodel' if args.auto else args.cls_model
 | ||
| cls_params_file = ""
 | ||
| # Recognition模型,文字识别模型
 | ||
| rec_model_file = './ch_PP-OCRv3/workspace/ch_PP-OCRv3_rec_1684x_f32.bmodel' if args.auto else args.rec_model
 | ||
| rec_params_file = ""
 | ||
| rec_label_file = './ppocr_keys_v1.txt' if args.auto else args.rec_label_file
 | ||
| image_file = './12.jpg' if args.auto else args.image
 | ||
| 
 | ||
| # PPOCR的cls和rec模型现在已经支持推理一个Batch的数据
 | ||
| # 定义下面两个变量后, 可用于设置trt输入shape, 并在PPOCR模型初始化后, 完成Batch推理设置
 | ||
| cls_batch_size = 1
 | ||
| rec_batch_size = 1
 | ||
| 
 | ||
| # 当使用TRT时,分别给三个模型的runtime设置动态shape,并完成模型的创建.
 | ||
| # 注意: 需要在检测模型创建完成后,再设置分类模型的动态输入并创建分类模型, 识别模型同理.
 | ||
| # 如果用户想要自己改动检测模型的输入shape, 我们建议用户把检测模型的长和高设置为32的倍数.
 | ||
| det_option = runtime_option
 | ||
| det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
 | ||
|                                [1, 3, 960, 960])
 | ||
| # 用户可以把TRT引擎文件保存至本地
 | ||
| # det_option.set_trt_cache_file(args.det_model  + "/det_trt_cache.trt")
 | ||
| det_model = fd.vision.ocr.DBDetector(
 | ||
|     det_model_file,
 | ||
|     det_params_file,
 | ||
|     runtime_option=det_option,
 | ||
|     model_format=fd.ModelFormat.SOPHGO)
 | ||
| 
 | ||
| cls_option = runtime_option
 | ||
| cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
 | ||
|                                [cls_batch_size, 3, 48, 320],
 | ||
|                                [cls_batch_size, 3, 48, 1024])
 | ||
| # 用户可以把TRT引擎文件保存至本地
 | ||
| # cls_option.set_trt_cache_file(args.cls_model  + "/cls_trt_cache.trt")
 | ||
| cls_model = fd.vision.ocr.Classifier(
 | ||
|     cls_model_file,
 | ||
|     cls_params_file,
 | ||
|     runtime_option=cls_option,
 | ||
|     model_format=fd.ModelFormat.SOPHGO)
 | ||
| 
 | ||
| rec_option = runtime_option
 | ||
| rec_option.set_trt_input_shape("x", [1, 3, 48, 10],
 | ||
|                                [rec_batch_size, 3, 48, 320],
 | ||
|                                [rec_batch_size, 3, 48, 2304])
 | ||
| # 用户可以把TRT引擎文件保存至本地
 | ||
| # rec_option.set_trt_cache_file(args.rec_model  + "/rec_trt_cache.trt")
 | ||
| rec_model = fd.vision.ocr.Recognizer(
 | ||
|     rec_model_file,
 | ||
|     rec_params_file,
 | ||
|     rec_label_file,
 | ||
|     runtime_option=rec_option,
 | ||
|     model_format=fd.ModelFormat.SOPHGO)
 | ||
| 
 | ||
| # 创建PP-OCR,串联3个模型,其中cls_model可选,如无需求,可设置为None
 | ||
| ppocr_v3 = fd.vision.ocr.PPOCRv3(
 | ||
|     det_model=det_model, cls_model=cls_model, rec_model=rec_model)
 | ||
| 
 | ||
| # 需要使用下行代码, 来启用rec模型的静态shape推理,这里rec模型的静态输入为[3, 48, 320]
 | ||
| rec_model.preprocessor.static_shape_infer = True
 | ||
| rec_model.preprocessor.rec_image_shape = [3, 48, 320]
 | ||
| 
 | ||
| # 给cls和rec模型设置推理时的batch size
 | ||
| # 此值能为-1, 和1到正无穷
 | ||
| # 当此值为-1时, cls和rec模型的batch size将默认和det模型检测出的框的数量相同
 | ||
| ppocr_v3.cls_batch_size = cls_batch_size
 | ||
| ppocr_v3.rec_batch_size = rec_batch_size
 | ||
| 
 | ||
| # 预测图片准备
 | ||
| im = cv2.imread(image_file)
 | ||
| 
 | ||
| #预测并打印结果
 | ||
| result = ppocr_v3.predict(im)
 | ||
| 
 | ||
| print(result)
 | ||
| 
 | ||
| # 可视化结果
 | ||
| vis_im = fd.vision.vis_ppocr(im, result)
 | ||
| cv2.imwrite("sophgo_result.jpg", vis_im)
 | ||
| print("Visualized result save in ./sophgo_result.jpg")
 |