mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	 f36f9324de
			
		
	
	f36f9324de
	
	
	
		
			
			* Pick PPOCR fastdeploy docs from PaddleOCR * improve ppocr * improve readme * remove old PP-OCRv2 and PP-OCRv3 folfers * rename kunlun to kunlunxin * improve readme * improve readme * improve readme --------- Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
		
			
				
	
	
		
			83 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			83 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #    http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| import fastdeploy as fd
 | |
| import cv2
 | |
| import os
 | |
| 
 | |
| 
 | |
| def parse_arguments():
 | |
|     import argparse
 | |
|     import ast
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument(
 | |
|         "--det_model", required=True, help="Path of Detection model of PPOCR.")
 | |
|     parser.add_argument(
 | |
|         "--image", type=str, required=True, help="Path of test image file.")
 | |
|     parser.add_argument(
 | |
|         "--device",
 | |
|         type=str,
 | |
|         default='cpu',
 | |
|         help="Type of inference device, support 'cpu', 'kunlunxin' or 'gpu'.")
 | |
|     parser.add_argument(
 | |
|         "--device_id",
 | |
|         type=int,
 | |
|         default=0,
 | |
|         help="Define which GPU card used to run model.")
 | |
|     return parser.parse_args()
 | |
| 
 | |
| 
 | |
| def build_option(args):
 | |
| 
 | |
|     det_option = fd.RuntimeOption()
 | |
| 
 | |
|     if args.device.lower() == "gpu":
 | |
|         det_option.use_gpu(args.device_id)
 | |
| 
 | |
|     return det_option
 | |
| 
 | |
| 
 | |
| args = parse_arguments()
 | |
| 
 | |
| det_model_file = os.path.join(args.det_model, "inference.pdmodel")
 | |
| det_params_file = os.path.join(args.det_model, "inference.pdiparams")
 | |
| 
 | |
| # Set the runtime option
 | |
| det_option = build_option(args)
 | |
| 
 | |
| # Create the det_model
 | |
| det_model = fd.vision.ocr.DBDetector(
 | |
|     det_model_file, det_params_file, runtime_option=det_option)
 | |
| 
 | |
| # Set the preporcessing parameters
 | |
| det_model.preprocessor.max_side_len = 960
 | |
| det_model.postprocessor.det_db_thresh = 0.3
 | |
| det_model.postprocessor.det_db_box_thresh = 0.6
 | |
| det_model.postprocessor.det_db_unclip_ratio = 1.5
 | |
| det_model.postprocessor.det_db_score_mode = "slow"
 | |
| det_model.postprocessor.use_dilation = False
 | |
| 
 | |
| # Read the image
 | |
| im = cv2.imread(args.image)
 | |
| 
 | |
| # Predict and return the results
 | |
| result = det_model.predict(im)
 | |
| 
 | |
| print(result)
 | |
| 
 | |
| # Visualize the results
 | |
| vis_im = fd.vision.vis_ppocr(im, result)
 | |
| cv2.imwrite("visualized_result.jpg", vis_im)
 | |
| print("Visualized result save in ./visualized_result.jpg")
 |