mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	 f36f9324de
			
		
	
	f36f9324de
	
	
	
		
			
			* Pick PPOCR fastdeploy docs from PaddleOCR * improve ppocr * improve readme * remove old PP-OCRv2 and PP-OCRv3 folfers * rename kunlun to kunlunxin * improve readme * improve readme * improve readme --------- Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
		
			
				
	
	
		
			219 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			219 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #    http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| import fastdeploy as fd
 | |
| import cv2
 | |
| import os
 | |
| 
 | |
| 
 | |
| def parse_arguments():
 | |
|     import argparse
 | |
|     import ast
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument(
 | |
|         "--det_model", required=True, help="Path of Detection model of PPOCR.")
 | |
|     parser.add_argument(
 | |
|         "--cls_model",
 | |
|         required=True,
 | |
|         help="Path of Classification model of PPOCR.")
 | |
|     parser.add_argument(
 | |
|         "--rec_model",
 | |
|         required=True,
 | |
|         help="Path of Recognization model of PPOCR.")
 | |
|     parser.add_argument(
 | |
|         "--rec_label_file",
 | |
|         required=True,
 | |
|         help="Path of Recognization model of PPOCR.")
 | |
|     parser.add_argument(
 | |
|         "--image", type=str, required=True, help="Path of test image file.")
 | |
|     parser.add_argument(
 | |
|         "--device",
 | |
|         type=str,
 | |
|         default='cpu',
 | |
|         help="Type of inference device, support 'cpu' or 'gpu'.")
 | |
|     parser.add_argument(
 | |
|         "--device_id",
 | |
|         type=int,
 | |
|         default=0,
 | |
|         help="Define which GPU card used to run model.")
 | |
|     parser.add_argument(
 | |
|         "--cls_bs",
 | |
|         type=int,
 | |
|         default=1,
 | |
|         help="Classification model inference batch size.")
 | |
|     parser.add_argument(
 | |
|         "--rec_bs",
 | |
|         type=int,
 | |
|         default=6,
 | |
|         help="Recognition model inference batch size")
 | |
|     parser.add_argument(
 | |
|         "--backend",
 | |
|         type=str,
 | |
|         default="default",
 | |
|         help="Type of inference backend, support ort/trt/paddle/openvino, default 'openvino' for cpu, 'tensorrt' for gpu"
 | |
|     )
 | |
| 
 | |
|     return parser.parse_args()
 | |
| 
 | |
| 
 | |
| def build_option(args):
 | |
| 
 | |
|     det_option = fd.RuntimeOption()
 | |
|     cls_option = fd.RuntimeOption()
 | |
|     rec_option = fd.RuntimeOption()
 | |
| 
 | |
|     if args.device.lower() == "gpu":
 | |
|         det_option.use_gpu(args.device_id)
 | |
|         cls_option.use_gpu(args.device_id)
 | |
|         rec_option.use_gpu(args.device_id)
 | |
| 
 | |
|     if args.backend.lower() == "trt":
 | |
|         assert args.device.lower(
 | |
|         ) == "gpu", "TensorRT backend require inference on device GPU."
 | |
|         det_option.use_trt_backend()
 | |
|         cls_option.use_trt_backend()
 | |
|         rec_option.use_trt_backend()
 | |
| 
 | |
|         # If use TRT backend, the dynamic shape will be set as follow.
 | |
|         # We recommend that users set the length and height of the detection model to a multiple of 32.
 | |
|         # We also recommend that users set the Trt input shape as follow.
 | |
|         det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
 | |
|                                        [1, 3, 960, 960])
 | |
|         cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
 | |
|                                        [args.cls_bs, 3, 48, 320],
 | |
|                                        [args.cls_bs, 3, 48, 1024])
 | |
|         rec_option.set_trt_input_shape("x", [1, 3, 48, 10],
 | |
|                                        [args.rec_bs, 3, 48, 320],
 | |
|                                        [args.rec_bs, 3, 48, 2304])
 | |
| 
 | |
|         # Users could save TRT cache file to disk as follow.
 | |
|         det_option.set_trt_cache_file(args.det_model + "/det_trt_cache.trt")
 | |
|         cls_option.set_trt_cache_file(args.cls_model + "/cls_trt_cache.trt")
 | |
|         rec_option.set_trt_cache_file(args.rec_model + "/rec_trt_cache.trt")
 | |
| 
 | |
|     elif args.backend.lower() == "pptrt":
 | |
|         assert args.device.lower(
 | |
|         ) == "gpu", "Paddle-TensorRT backend require inference on device GPU."
 | |
|         det_option.use_paddle_infer_backend()
 | |
|         det_option.paddle_infer_option.collect_trt_shape = True
 | |
|         det_option.paddle_infer_option.enable_trt = True
 | |
| 
 | |
|         cls_option.use_paddle_infer_backend()
 | |
|         cls_option.paddle_infer_option.collect_trt_shape = True
 | |
|         cls_option.paddle_infer_option.enable_trt = True
 | |
| 
 | |
|         rec_option.use_paddle_infer_backend()
 | |
|         rec_option.paddle_infer_option.collect_trt_shape = True
 | |
|         rec_option.paddle_infer_option.enable_trt = True
 | |
| 
 | |
|         # If use TRT backend, the dynamic shape will be set as follow.
 | |
|         # We recommend that users set the length and height of the detection model to a multiple of 32.
 | |
|         # We also recommend that users set the Trt input shape as follow.
 | |
|         det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
 | |
|                                        [1, 3, 960, 960])
 | |
|         cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
 | |
|                                        [args.cls_bs, 3, 48, 320],
 | |
|                                        [args.cls_bs, 3, 48, 1024])
 | |
|         rec_option.set_trt_input_shape("x", [1, 3, 48, 10],
 | |
|                                        [args.rec_bs, 3, 48, 320],
 | |
|                                        [args.rec_bs, 3, 48, 2304])
 | |
| 
 | |
|         # Users could save TRT cache file to disk as follow.
 | |
|         det_option.set_trt_cache_file(args.det_model)
 | |
|         cls_option.set_trt_cache_file(args.cls_model)
 | |
|         rec_option.set_trt_cache_file(args.rec_model)
 | |
| 
 | |
|     elif args.backend.lower() == "ort":
 | |
|         det_option.use_ort_backend()
 | |
|         cls_option.use_ort_backend()
 | |
|         rec_option.use_ort_backend()
 | |
| 
 | |
|     elif args.backend.lower() == "paddle":
 | |
|         det_option.use_paddle_infer_backend()
 | |
|         cls_option.use_paddle_infer_backend()
 | |
|         rec_option.use_paddle_infer_backend()
 | |
| 
 | |
|     elif args.backend.lower() == "openvino":
 | |
|         assert args.device.lower(
 | |
|         ) == "cpu", "OpenVINO backend require inference on device CPU."
 | |
|         det_option.use_openvino_backend()
 | |
|         cls_option.use_openvino_backend()
 | |
|         rec_option.use_openvino_backend()
 | |
| 
 | |
|     elif args.backend.lower() == "pplite":
 | |
|         assert args.device.lower(
 | |
|         ) == "cpu", "Paddle Lite backend require inference on device CPU."
 | |
|         det_option.use_lite_backend()
 | |
|         cls_option.use_lite_backend()
 | |
|         rec_option.use_lite_backend()
 | |
| 
 | |
|     return det_option, cls_option, rec_option
 | |
| 
 | |
| 
 | |
| args = parse_arguments()
 | |
| 
 | |
| det_model_file = os.path.join(args.det_model, "inference.pdmodel")
 | |
| det_params_file = os.path.join(args.det_model, "inference.pdiparams")
 | |
| 
 | |
| cls_model_file = os.path.join(args.cls_model, "inference.pdmodel")
 | |
| cls_params_file = os.path.join(args.cls_model, "inference.pdiparams")
 | |
| 
 | |
| rec_model_file = os.path.join(args.rec_model, "inference.pdmodel")
 | |
| rec_params_file = os.path.join(args.rec_model, "inference.pdiparams")
 | |
| rec_label_file = args.rec_label_file
 | |
| 
 | |
| det_option, cls_option, rec_option = build_option(args)
 | |
| 
 | |
| det_model = fd.vision.ocr.DBDetector(
 | |
|     det_model_file, det_params_file, runtime_option=det_option)
 | |
| 
 | |
| cls_model = fd.vision.ocr.Classifier(
 | |
|     cls_model_file, cls_params_file, runtime_option=cls_option)
 | |
| 
 | |
| rec_model = fd.vision.ocr.Recognizer(
 | |
|     rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option)
 | |
| 
 | |
| # Parameters settings for pre and post processing of Det/Cls/Rec Models.
 | |
| # All parameters are set to default values.
 | |
| det_model.preprocessor.max_side_len = 960
 | |
| det_model.postprocessor.det_db_thresh = 0.3
 | |
| det_model.postprocessor.det_db_box_thresh = 0.6
 | |
| det_model.postprocessor.det_db_unclip_ratio = 1.5
 | |
| det_model.postprocessor.det_db_score_mode = "slow"
 | |
| det_model.postprocessor.use_dilation = False
 | |
| cls_model.postprocessor.cls_thresh = 0.9
 | |
| 
 | |
| # Create PP-OCRv3, if cls_model is not needed, just set cls_model=None .
 | |
| ppocr_v3 = fd.vision.ocr.PPOCRv3(
 | |
|     det_model=det_model, cls_model=cls_model, rec_model=rec_model)
 | |
| 
 | |
| # Set inference batch size for cls model and rec model, the value could be -1 and 1 to positive infinity.
 | |
| # When inference batch size is set to -1, it means that the inference batch size
 | |
| # of the cls and rec models will be the same as the number of boxes detected by the det model.
 | |
| ppocr_v3.cls_batch_size = args.cls_bs
 | |
| ppocr_v3.rec_batch_size = args.rec_bs
 | |
| 
 | |
| # Read the input image
 | |
| im = cv2.imread(args.image)
 | |
| 
 | |
| # Predict and reutrn the results
 | |
| result = ppocr_v3.predict(im)
 | |
| 
 | |
| print(result)
 | |
| 
 | |
| # Visuliaze the results.
 | |
| vis_im = fd.vision.vis_ppocr(im, result)
 | |
| cv2.imwrite("visualized_result.jpg", vis_im)
 | |
| print("Visualized result save in ./visualized_result.jpg")
 |