mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-11-01 04:12:58 +08:00 
			
		
		
		
	 553adb299e
			
		
	
	553adb299e
	
	
	
		
			
			* collect-env subcommand * trigger ci --------- Co-authored-by: K11OntheBoat <your_email@example.com>
		
			
				
	
	
		
			784 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			784 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2025  PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License"
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| 
 | |
| # This file is modified from https://github.com/vllm-project/vllm/collect_env.py
 | |
| 
 | |
| import datetime
 | |
| import locale
 | |
| import os
 | |
| import subprocess
 | |
| import sys
 | |
| 
 | |
| # Unlike the rest of the PyTorch this file must be python2 compliant.
 | |
| # This script outputs relevant system environment info
 | |
| # Run it with `python collect_env.py` or `python -m torch.utils.collect_env`
 | |
| from collections import namedtuple
 | |
| 
 | |
| import regex as re
 | |
| 
 | |
| from fastdeploy.envs import environment_variables
 | |
| 
 | |
| try:
 | |
|     import torch
 | |
| 
 | |
|     TORCH_AVAILABLE = True
 | |
| except (ImportError, NameError, AttributeError, OSError):
 | |
|     TORCH_AVAILABLE = False
 | |
| 
 | |
| try:
 | |
|     import paddle
 | |
| 
 | |
|     PADDLE_AVAILABLE = True
 | |
| except (ImportError, NameError, AttributeError, OSError):
 | |
|     PADDLE_AVAILABLE = False
 | |
| 
 | |
| # System Environment Information
 | |
| SystemEnv = namedtuple(
 | |
|     "SystemEnv",
 | |
|     [
 | |
|         "torch_version",
 | |
|         "is_debug_build",
 | |
|         "cuda_compiled_version",
 | |
|         "paddle_version",
 | |
|         "cuda_compiled_version_paddle",
 | |
|         "gcc_version",
 | |
|         "clang_version",
 | |
|         "cmake_version",
 | |
|         "os",
 | |
|         "libc_version",
 | |
|         "python_version",
 | |
|         "python_platform",
 | |
|         "is_cuda_available",
 | |
|         "cuda_runtime_version",
 | |
|         "cuda_module_loading",
 | |
|         "nvidia_driver_version",
 | |
|         "nvidia_gpu_models",
 | |
|         "cudnn_version",
 | |
|         "pip_version",  # 'pip' or 'pip3'
 | |
|         "pip_packages",
 | |
|         "conda_packages",
 | |
|         "is_xnnpack_available",
 | |
|         "cpu_info",
 | |
|         "fastdeploy_version",  # fastdploy specific field
 | |
|         "fastdeploy_build_flags",  # fastdploy specific field
 | |
|         "gpu_topo",  # fastdploy specific field
 | |
|         "env_vars",
 | |
|     ],
 | |
| )
 | |
| 
 | |
| DEFAULT_CONDA_PATTERNS = {
 | |
|     "torch",
 | |
|     "numpy",
 | |
|     "cudatoolkit",
 | |
|     "soumith",
 | |
|     "mkl",
 | |
|     "magma",
 | |
|     "triton",
 | |
|     "optree",
 | |
|     "nccl",
 | |
|     "transformers",
 | |
|     "zmq",
 | |
|     "nvidia",
 | |
|     "pynvml",
 | |
| }
 | |
| 
 | |
| DEFAULT_PIP_PATTERNS = {
 | |
|     "torch",
 | |
|     "numpy",
 | |
|     "mypy",
 | |
|     "flake8",
 | |
|     "triton",
 | |
|     "optree",
 | |
|     "onnx",
 | |
|     "nccl",
 | |
|     "transformers",
 | |
|     "zmq",
 | |
|     "nvidia",
 | |
|     "pynvml",
 | |
| }
 | |
| 
 | |
| 
 | |
| def run(command):
 | |
|     """Return (return-code, stdout, stderr)."""
 | |
|     shell = True if type(command) is str else False
 | |
|     try:
 | |
|         p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=shell)
 | |
|         raw_output, raw_err = p.communicate()
 | |
|         rc = p.returncode
 | |
|         if get_platform() == "win32":
 | |
|             enc = "oem"
 | |
|         else:
 | |
|             enc = locale.getpreferredencoding()
 | |
|         output = raw_output.decode(enc)
 | |
|         if command == "nvidia-smi topo -m":
 | |
|             # don't remove the leading whitespace of `nvidia-smi topo -m`
 | |
|             #   because they are meaningful
 | |
|             output = output.rstrip()
 | |
|         else:
 | |
|             output = output.strip()
 | |
|         err = raw_err.decode(enc)
 | |
|         return rc, output, err.strip()
 | |
| 
 | |
|     except FileNotFoundError:
 | |
|         cmd_str = command if isinstance(command, str) else command[0]
 | |
|         return 127, "", f"Command not found: {cmd_str}"
 | |
| 
 | |
| 
 | |
| def run_and_read_all(run_lambda, command):
 | |
|     """Run command using run_lambda; reads and returns entire output if rc is 0."""
 | |
|     rc, out, _ = run_lambda(command)
 | |
|     if rc != 0:
 | |
|         return None
 | |
|     return out
 | |
| 
 | |
| 
 | |
| def run_and_parse_first_match(run_lambda, command, regex):
 | |
|     """Run command using run_lambda, returns the first regex match if it exists."""
 | |
|     rc, out, _ = run_lambda(command)
 | |
|     if rc != 0:
 | |
|         return None
 | |
|     match = re.search(regex, out)
 | |
|     if match is None:
 | |
|         return None
 | |
|     return match.group(1)
 | |
| 
 | |
| 
 | |
| def run_and_return_first_line(run_lambda, command):
 | |
|     """Run command using run_lambda and returns first line if output is not empty."""
 | |
|     rc, out, _ = run_lambda(command)
 | |
|     if rc != 0:
 | |
|         return None
 | |
|     return out.split("\n")[0]
 | |
| 
 | |
| 
 | |
| def get_conda_packages(run_lambda, patterns=None):
 | |
|     if patterns is None:
 | |
|         patterns = DEFAULT_CONDA_PATTERNS
 | |
|     conda = os.environ.get("CONDA_EXE", "conda")
 | |
|     out = run_and_read_all(run_lambda, [conda, "list"])
 | |
|     if out is None:
 | |
|         return out
 | |
| 
 | |
|     return "\n".join(
 | |
|         line for line in out.splitlines() if not line.startswith("#") and any(name in line for name in patterns)
 | |
|     )
 | |
| 
 | |
| 
 | |
| def get_gcc_version(run_lambda):
 | |
|     return run_and_parse_first_match(run_lambda, "gcc --version", r"gcc (.*)")
 | |
| 
 | |
| 
 | |
| def get_clang_version(run_lambda):
 | |
|     return run_and_parse_first_match(run_lambda, "clang --version", r"clang version (.*)")
 | |
| 
 | |
| 
 | |
| def get_cmake_version(run_lambda):
 | |
|     return run_and_parse_first_match(run_lambda, "cmake --version", r"cmake (.*)")
 | |
| 
 | |
| 
 | |
| def get_nvidia_driver_version(run_lambda):
 | |
|     if get_platform() == "darwin":
 | |
|         cmd = "kextstat | grep -i cuda"
 | |
|         return run_and_parse_first_match(run_lambda, cmd, r"com[.]nvidia[.]CUDA [(](.*?)[)]")
 | |
|     smi = get_nvidia_smi()
 | |
|     return run_and_parse_first_match(run_lambda, smi, r"Driver Version: (.*?) ")
 | |
| 
 | |
| 
 | |
| def get_gpu_info(run_lambda):
 | |
|     if get_platform() == "darwin":
 | |
|         if TORCH_AVAILABLE and torch.cuda.is_available():
 | |
|             gcnArch = ""
 | |
|             return torch.cuda.get_device_name(None) + gcnArch
 | |
|         return None
 | |
|     smi = get_nvidia_smi()
 | |
|     uuid_regex = re.compile(r" \(UUID: .+?\)")
 | |
|     rc, out, _ = run_lambda(smi + " -L")
 | |
|     if rc != 0:
 | |
|         return None
 | |
|     # Anonymize GPUs by removing their UUID
 | |
|     return re.sub(uuid_regex, "", out)
 | |
| 
 | |
| 
 | |
| def get_running_cuda_version(run_lambda):
 | |
|     return run_and_parse_first_match(run_lambda, "nvcc --version", r"release .+ V(.*)")
 | |
| 
 | |
| 
 | |
| def get_cudnn_version(run_lambda):
 | |
|     """Return a list of libcudnn.so; it's hard to tell which one is being used."""
 | |
|     if get_platform() == "win32":
 | |
|         system_root = os.environ.get("SYSTEMROOT", "C:\\Windows")
 | |
|         cuda_path = os.environ.get("CUDA_PATH", "%CUDA_PATH%")
 | |
|         where_cmd = os.path.join(system_root, "System32", "where")
 | |
|         cudnn_cmd = '{} /R "{}\\bin" cudnn*.dll'.format(where_cmd, cuda_path)
 | |
|     elif get_platform() == "darwin":
 | |
|         # CUDA libraries and drivers can be found in /usr/local/cuda/. See
 | |
|         # https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#install
 | |
|         # https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installmac
 | |
|         # Use CUDNN_LIBRARY when cudnn library is installed elsewhere.
 | |
|         cudnn_cmd = "ls /usr/local/cuda/lib/libcudnn*"
 | |
|     else:
 | |
|         cudnn_cmd = 'ldconfig -p | grep libcudnn | rev | cut -d" " -f1 | rev'
 | |
|     rc, out, _ = run_lambda(cudnn_cmd)
 | |
|     # find will return 1 if there are permission errors or if not found
 | |
|     if len(out) == 0 or (rc != 1 and rc != 0):
 | |
|         l = os.environ.get("CUDNN_LIBRARY")
 | |
|         if l is not None and os.path.isfile(l):
 | |
|             return os.path.realpath(l)
 | |
|         return None
 | |
|     files_set = set()
 | |
|     for fn in out.split("\n"):
 | |
|         fn = os.path.realpath(fn)  # eliminate symbolic links
 | |
|         if os.path.isfile(fn):
 | |
|             files_set.add(fn)
 | |
|     if not files_set:
 | |
|         return None
 | |
|     # Alphabetize the result because the order is non-deterministic otherwise
 | |
|     files = sorted(files_set)
 | |
|     if len(files) == 1:
 | |
|         return files[0]
 | |
|     result = "\n".join(files)
 | |
|     return "Probably one of the following:\n{}".format(result)
 | |
| 
 | |
| 
 | |
| def get_nvidia_smi():
 | |
|     # Note: nvidia-smi is currently available only on Windows and Linux
 | |
|     smi = "nvidia-smi"
 | |
|     if get_platform() == "win32":
 | |
|         system_root = os.environ.get("SYSTEMROOT", "C:\\Windows")
 | |
|         program_files_root = os.environ.get("PROGRAMFILES", "C:\\Program Files")
 | |
|         legacy_path = os.path.join(program_files_root, "NVIDIA Corporation", "NVSMI", smi)
 | |
|         new_path = os.path.join(system_root, "System32", smi)
 | |
|         smis = [new_path, legacy_path]
 | |
|         for candidate_smi in smis:
 | |
|             if os.path.exists(candidate_smi):
 | |
|                 smi = '"{}"'.format(candidate_smi)
 | |
|                 break
 | |
|     return smi
 | |
| 
 | |
| 
 | |
| def get_fastdeploy_version():
 | |
|     import pkg_resources
 | |
| 
 | |
|     version = os.environ.get("FASTDEPLOY_VERSION")
 | |
|     if version:
 | |
|         return version
 | |
| 
 | |
|     try:
 | |
|         return pkg_resources.get_distribution("fastdeploy").version
 | |
|     except:
 | |
|         pass
 | |
| 
 | |
|     try:
 | |
|         result = subprocess.run(["pip", "show", "fastdeploy"], capture_output=True, text=True)
 | |
|         if result.returncode == 0:
 | |
|             for line in result.stdout.split("\n"):
 | |
|                 if line.startswith("Version:"):
 | |
|                     return line.split(":")[1].strip()
 | |
|     except:
 | |
|         pass
 | |
| 
 | |
|     return "unknown (could not determine version)"
 | |
| 
 | |
| 
 | |
| def summarize_fastdeploy_build_flags():
 | |
|     # This could be a static method if the flags are constant, or dynamic if you need to check environment variables, etc.
 | |
|     return "CUDA Archs: {};".format(os.getenv("FD_BUILDING_ARCS", "[]"))
 | |
| 
 | |
| 
 | |
| def get_gpu_topo(run_lambda):
 | |
|     output = None
 | |
| 
 | |
|     if get_platform() == "linux":
 | |
|         output = run_and_read_all(run_lambda, "nvidia-smi topo -m")
 | |
|         if output is None:
 | |
|             output = run_and_read_all(run_lambda, "rocm-smi --showtopo")
 | |
| 
 | |
|     return output
 | |
| 
 | |
| 
 | |
| # example outputs of CPU infos
 | |
| #  * linux
 | |
| #    Architecture:            x86_64
 | |
| #      CPU op-mode(s):        32-bit, 64-bit
 | |
| #      Address sizes:         46 bits physical, 48 bits virtual
 | |
| #      Byte Order:            Little Endian
 | |
| #    CPU(s):                  128
 | |
| #      On-line CPU(s) list:   0-127
 | |
| #    Vendor ID:               GenuineIntel
 | |
| #      Model name:            Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
 | |
| #        CPU family:          6
 | |
| #        Model:               106
 | |
| #        Thread(s) per core:  2
 | |
| #        Core(s) per socket:  32
 | |
| #        Socket(s):           2
 | |
| #        Stepping:            6
 | |
| #        BogoMIPS:            5799.78
 | |
| #        Flags:               fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr
 | |
| #                             sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl
 | |
| #                             xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16
 | |
| #                             pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand
 | |
| #                             hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced
 | |
| #                             fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap
 | |
| #                             avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1
 | |
| #                             xsaves wbnoinvd ida arat avx512vbmi pku ospke avx512_vbmi2 gfni vaes vpclmulqdq
 | |
| #                             avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid md_clear flush_l1d arch_capabilities
 | |
| #    Virtualization features:
 | |
| #      Hypervisor vendor:     KVM
 | |
| #      Virtualization type:   full
 | |
| #    Caches (sum of all):
 | |
| #      L1d:                   3 MiB (64 instances)
 | |
| #      L1i:                   2 MiB (64 instances)
 | |
| #      L2:                    80 MiB (64 instances)
 | |
| #      L3:                    108 MiB (2 instances)
 | |
| #    NUMA:
 | |
| #      NUMA node(s):          2
 | |
| #      NUMA node0 CPU(s):     0-31,64-95
 | |
| #      NUMA node1 CPU(s):     32-63,96-127
 | |
| #    Vulnerabilities:
 | |
| #      Itlb multihit:         Not affected
 | |
| #      L1tf:                  Not affected
 | |
| #      Mds:                   Not affected
 | |
| #      Meltdown:              Not affected
 | |
| #      Mmio stale data:       Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
 | |
| #      Retbleed:              Not affected
 | |
| #      Spec store bypass:     Mitigation; Speculative Store Bypass disabled via prctl and seccomp
 | |
| #      Spectre v1:            Mitigation; usercopy/swapgs barriers and __user pointer sanitization
 | |
| #      Spectre v2:            Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
 | |
| #      Srbds:                 Not affected
 | |
| #      Tsx async abort:       Not affected
 | |
| #  * win32
 | |
| #    Architecture=9
 | |
| #    CurrentClockSpeed=2900
 | |
| #    DeviceID=CPU0
 | |
| #    Family=179
 | |
| #    L2CacheSize=40960
 | |
| #    L2CacheSpeed=
 | |
| #    Manufacturer=GenuineIntel
 | |
| #    MaxClockSpeed=2900
 | |
| #    Name=Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
 | |
| #    ProcessorType=3
 | |
| #    Revision=27142
 | |
| #
 | |
| #    Architecture=9
 | |
| #    CurrentClockSpeed=2900
 | |
| #    DeviceID=CPU1
 | |
| #    Family=179
 | |
| #    L2CacheSize=40960
 | |
| #    L2CacheSpeed=
 | |
| #    Manufacturer=GenuineIntel
 | |
| #    MaxClockSpeed=2900
 | |
| #    Name=Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
 | |
| #    ProcessorType=3
 | |
| #    Revision=27142
 | |
| 
 | |
| 
 | |
| def get_cpu_info(run_lambda):
 | |
|     rc, out, err = 0, "", ""
 | |
|     if get_platform() == "linux":
 | |
|         rc, out, err = run_lambda("lscpu")
 | |
|     elif get_platform() == "win32":
 | |
|         rc, out, err = run_lambda(
 | |
|             "wmic cpu get Name,Manufacturer,Family,Architecture,ProcessorType,DeviceID, \
 | |
|         CurrentClockSpeed,MaxClockSpeed,L2CacheSize,L2CacheSpeed,Revision /VALUE"
 | |
|         )
 | |
|     elif get_platform() == "darwin":
 | |
|         rc, out, err = run_lambda("sysctl -n machdep.cpu.brand_string")
 | |
|     cpu_info = "None"
 | |
|     if rc == 0:
 | |
|         cpu_info = out
 | |
|     else:
 | |
|         cpu_info = err
 | |
|     return cpu_info
 | |
| 
 | |
| 
 | |
| def get_platform():
 | |
|     if sys.platform.startswith("linux"):
 | |
|         return "linux"
 | |
|     elif sys.platform.startswith("win32"):
 | |
|         return "win32"
 | |
|     elif sys.platform.startswith("cygwin"):
 | |
|         return "cygwin"
 | |
|     elif sys.platform.startswith("darwin"):
 | |
|         return "darwin"
 | |
|     else:
 | |
|         return sys.platform
 | |
| 
 | |
| 
 | |
| def get_mac_version(run_lambda):
 | |
|     return run_and_parse_first_match(run_lambda, "sw_vers -productVersion", r"(.*)")
 | |
| 
 | |
| 
 | |
| def get_windows_version(run_lambda):
 | |
|     system_root = os.environ.get("SYSTEMROOT", "C:\\Windows")
 | |
|     wmic_cmd = os.path.join(system_root, "System32", "Wbem", "wmic")
 | |
|     findstr_cmd = os.path.join(system_root, "System32", "findstr")
 | |
|     return run_and_read_all(run_lambda, "{} os get Caption | {} /v Caption".format(wmic_cmd, findstr_cmd))
 | |
| 
 | |
| 
 | |
| def get_lsb_version(run_lambda):
 | |
|     return run_and_parse_first_match(run_lambda, "lsb_release -a", r"Description:\t(.*)")
 | |
| 
 | |
| 
 | |
| def check_release_file(run_lambda):
 | |
|     return run_and_parse_first_match(run_lambda, "cat /etc/*-release", r'PRETTY_NAME="(.*)"')
 | |
| 
 | |
| 
 | |
| def get_os(run_lambda):
 | |
|     from platform import machine
 | |
| 
 | |
|     platform = get_platform()
 | |
| 
 | |
|     if platform == "win32" or platform == "cygwin":
 | |
|         return get_windows_version(run_lambda)
 | |
| 
 | |
|     if platform == "darwin":
 | |
|         version = get_mac_version(run_lambda)
 | |
|         if version is None:
 | |
|             return None
 | |
|         return "macOS {} ({})".format(version, machine())
 | |
| 
 | |
|     if platform == "linux":
 | |
|         # Ubuntu/Debian based
 | |
|         desc = get_lsb_version(run_lambda)
 | |
|         if desc is not None:
 | |
|             return "{} ({})".format(desc, machine())
 | |
| 
 | |
|         # Try reading /etc/*-release
 | |
|         desc = check_release_file(run_lambda)
 | |
|         if desc is not None:
 | |
|             return "{} ({})".format(desc, machine())
 | |
| 
 | |
|         return "{} ({})".format(platform, machine())
 | |
| 
 | |
|     # Unknown platform
 | |
|     return platform
 | |
| 
 | |
| 
 | |
| def get_python_platform():
 | |
|     import platform
 | |
| 
 | |
|     return platform.platform()
 | |
| 
 | |
| 
 | |
| def get_libc_version():
 | |
|     import platform
 | |
| 
 | |
|     if get_platform() != "linux":
 | |
|         return "N/A"
 | |
|     return "-".join(platform.libc_ver())
 | |
| 
 | |
| 
 | |
| def get_pip_packages(run_lambda, patterns=None):
 | |
|     """Return `pip list` output. Note: will also find conda-installed pytorch and numpy packages."""
 | |
|     if patterns is None:
 | |
|         patterns = DEFAULT_PIP_PATTERNS
 | |
| 
 | |
|     def run_with_pip():
 | |
|         try:
 | |
|             import importlib.util
 | |
| 
 | |
|             pip_spec = importlib.util.find_spec("pip")
 | |
|             pip_available = pip_spec is not None
 | |
|         except ImportError:
 | |
|             pip_available = False
 | |
| 
 | |
|         if pip_available:
 | |
|             cmd = [sys.executable, "-mpip", "list", "--format=freeze"]
 | |
|         elif os.environ.get("UV") is not None:
 | |
|             print("uv is set")
 | |
|             cmd = ["uv", "pip", "list", "--format=freeze"]
 | |
|         else:
 | |
|             raise RuntimeError("Could not collect pip list output (pip or uv module not available)")
 | |
| 
 | |
|         out = run_and_read_all(run_lambda, cmd)
 | |
|         return "\n".join(line for line in out.splitlines() if any(name in line for name in patterns))
 | |
| 
 | |
|     pip_version = "pip3" if sys.version[0] == "3" else "pip"
 | |
|     out = run_with_pip()
 | |
|     return pip_version, out
 | |
| 
 | |
| 
 | |
| def get_cuda_module_loading_config():
 | |
|     if TORCH_AVAILABLE and torch.cuda.is_available():
 | |
|         torch.cuda.init()
 | |
|         config = os.environ.get("CUDA_MODULE_LOADING", "")
 | |
|         return config
 | |
|     else:
 | |
|         return "N/A"
 | |
| 
 | |
| 
 | |
| def is_xnnpack_available():
 | |
|     if TORCH_AVAILABLE:
 | |
|         try:
 | |
|             import torch.backends.xnnpack
 | |
| 
 | |
|             return str(torch.backends.xnnpack.enabled)  # type: ignore[attr-defined]
 | |
|         except:
 | |
|             return "N/A"
 | |
|     else:
 | |
|         return "N/A"
 | |
| 
 | |
| 
 | |
| def get_env_vars():
 | |
|     env_vars = ""
 | |
|     secret_terms = ("secret", "token", "api", "access", "password")
 | |
|     report_prefix = ("TORCH", "NCCL", "PYTORCH", "CUDA", "CUBLAS", "CUDNN", "OMP_", "MKL_", "NVIDIA")
 | |
|     for k, v in os.environ.items():
 | |
|         if any(term in k.lower() for term in secret_terms):
 | |
|             continue
 | |
|         if k in environment_variables:
 | |
|             env_vars = env_vars + "{}={}".format(k, v) + "\n"
 | |
|         if k.startswith(report_prefix):
 | |
|             env_vars = env_vars + "{}={}".format(k, v) + "\n"
 | |
| 
 | |
|     return env_vars
 | |
| 
 | |
| 
 | |
| def get_env_info():
 | |
|     run_lambda = run
 | |
|     pip_version, pip_list_output = get_pip_packages(run_lambda)
 | |
| 
 | |
|     if TORCH_AVAILABLE:
 | |
|         version_str = torch.__version__
 | |
|         debug_mode_str = str(torch.version.debug)
 | |
|         torch_cuda_available_str = str(torch.cuda.is_available())
 | |
|         cuda_version_str = torch.version.cuda
 | |
|     else:
 | |
|         version_str = debug_mode_str = torch_cuda_available_str = cuda_version_str = "N/A"
 | |
| 
 | |
|     if PADDLE_AVAILABLE:
 | |
|         paddle_version_str = paddle.__version__
 | |
|         paddle_cuda_available_str = str(torch.cuda.is_available())
 | |
|         paddle_cuda_version_str = str(paddle.version.cuda())
 | |
|     else:
 | |
|         version_str = paddle_cuda_available_str = cuda_version_str = "N/A"
 | |
| 
 | |
|     if torch_cuda_available_str == "True" or paddle_cuda_available_str == "True":
 | |
|         cuda_available_str = "True"
 | |
|     else:
 | |
|         cuda_available_str = "False"
 | |
| 
 | |
|     sys_version = sys.version.replace("\n", " ")
 | |
| 
 | |
|     conda_packages = get_conda_packages(run_lambda)
 | |
| 
 | |
|     fastdeploy_version = get_fastdeploy_version()
 | |
|     fastdeploy_build_flags = summarize_fastdeploy_build_flags()
 | |
|     gpu_topo = get_gpu_topo(run_lambda)
 | |
| 
 | |
|     return SystemEnv(
 | |
|         torch_version=version_str,
 | |
|         is_debug_build=debug_mode_str,
 | |
|         paddle_version=paddle_version_str,
 | |
|         cuda_compiled_version_paddle=paddle_cuda_version_str,
 | |
|         python_version="{} ({}-bit runtime)".format(sys_version, sys.maxsize.bit_length() + 1),
 | |
|         python_platform=get_python_platform(),
 | |
|         is_cuda_available=cuda_available_str,
 | |
|         cuda_compiled_version=cuda_version_str,
 | |
|         cuda_runtime_version=get_running_cuda_version(run_lambda),
 | |
|         cuda_module_loading=get_cuda_module_loading_config(),
 | |
|         nvidia_gpu_models=get_gpu_info(run_lambda),
 | |
|         nvidia_driver_version=get_nvidia_driver_version(run_lambda),
 | |
|         cudnn_version=get_cudnn_version(run_lambda),
 | |
|         pip_version=pip_version,
 | |
|         pip_packages=pip_list_output,
 | |
|         conda_packages=conda_packages,
 | |
|         os=get_os(run_lambda),
 | |
|         libc_version=get_libc_version(),
 | |
|         gcc_version=get_gcc_version(run_lambda),
 | |
|         clang_version=get_clang_version(run_lambda),
 | |
|         cmake_version=get_cmake_version(run_lambda),
 | |
|         is_xnnpack_available=is_xnnpack_available(),
 | |
|         cpu_info=get_cpu_info(run_lambda),
 | |
|         fastdeploy_version=fastdeploy_version,
 | |
|         fastdeploy_build_flags=fastdeploy_build_flags,
 | |
|         gpu_topo=gpu_topo,
 | |
|         env_vars=get_env_vars(),
 | |
|     )
 | |
| 
 | |
| 
 | |
| env_info_fmt = """
 | |
| ==============================
 | |
|         System Info
 | |
| ==============================
 | |
| OS                           : {os}
 | |
| GCC version                  : {gcc_version}
 | |
| Clang version                : {clang_version}
 | |
| CMake version                : {cmake_version}
 | |
| Libc version                 : {libc_version}
 | |
| 
 | |
| ==============================
 | |
|        PyTorch Info
 | |
| ==============================
 | |
| PyTorch version              : {torch_version}
 | |
| Is debug build               : {is_debug_build}
 | |
| CUDA used to build PyTorch   : {cuda_compiled_version}
 | |
| 
 | |
| ==============================
 | |
|        Paddle Info
 | |
| ==============================
 | |
| Paddle version              : {paddle_version}
 | |
| CUDA used to build paddle   : {cuda_compiled_version_paddle}
 | |
| 
 | |
| ==============================
 | |
|       Python Environment
 | |
| ==============================
 | |
| Python version               : {python_version}
 | |
| Python platform              : {python_platform}
 | |
| 
 | |
| ==============================
 | |
|        CUDA / GPU Info
 | |
| ==============================
 | |
| Is CUDA available            : {is_cuda_available}
 | |
| CUDA runtime version         : {cuda_runtime_version}
 | |
| CUDA_MODULE_LOADING set to   : {cuda_module_loading}
 | |
| GPU models and configuration : {nvidia_gpu_models}
 | |
| Nvidia driver version        : {nvidia_driver_version}
 | |
| cuDNN version                : {cudnn_version}
 | |
| Is XNNPACK available         : {is_xnnpack_available}
 | |
| 
 | |
| ==============================
 | |
|           CPU Info
 | |
| ==============================
 | |
| {cpu_info}
 | |
| 
 | |
| ==============================
 | |
| Versions of relevant libraries
 | |
| ==============================
 | |
| {pip_packages}
 | |
| {conda_packages}
 | |
| """.strip()
 | |
| 
 | |
| # both the above code and the following code use `strip()` to
 | |
| # remove leading/trailing whitespaces, so we need to add a newline
 | |
| # in between to separate the two sections
 | |
| env_info_fmt += "\n\n"
 | |
| 
 | |
| env_info_fmt += """
 | |
| ==============================
 | |
|          FastDeploy Info
 | |
| ==============================
 | |
| FastDeply Version                 : {fastdeploy_version}
 | |
| FastDeply Build Flags:
 | |
|   {fastdeploy_build_flags}
 | |
| GPU Topology:
 | |
|   {gpu_topo}
 | |
| 
 | |
| ==============================
 | |
|      Environment Variables
 | |
| ==============================
 | |
| {env_vars}
 | |
| """.strip()
 | |
| 
 | |
| 
 | |
| def pretty_str(envinfo):
 | |
| 
 | |
|     def replace_nones(dct, replacement="Could not collect"):
 | |
|         for key in dct.keys():
 | |
|             if dct[key] is not None:
 | |
|                 continue
 | |
|             dct[key] = replacement
 | |
|         return dct
 | |
| 
 | |
|     def replace_bools(dct, true="Yes", false="No"):
 | |
|         for key in dct.keys():
 | |
|             if dct[key] is True:
 | |
|                 dct[key] = true
 | |
|             elif dct[key] is False:
 | |
|                 dct[key] = false
 | |
|         return dct
 | |
| 
 | |
|     def prepend(text, tag="[prepend]"):
 | |
|         lines = text.split("\n")
 | |
|         updated_lines = [tag + line for line in lines]
 | |
|         return "\n".join(updated_lines)
 | |
| 
 | |
|     def replace_if_empty(text, replacement="No relevant packages"):
 | |
|         if text is not None and len(text) == 0:
 | |
|             return replacement
 | |
|         return text
 | |
| 
 | |
|     def maybe_start_on_next_line(string):
 | |
|         # If `string` is multiline, prepend a \n to it.
 | |
|         if string is not None and len(string.split("\n")) > 1:
 | |
|             return "\n{}\n".format(string)
 | |
|         return string
 | |
| 
 | |
|     mutable_dict = envinfo._asdict()
 | |
| 
 | |
|     # If nvidia_gpu_models is multiline, start on the next line
 | |
|     mutable_dict["nvidia_gpu_models"] = maybe_start_on_next_line(envinfo.nvidia_gpu_models)
 | |
| 
 | |
|     # If the machine doesn't have CUDA, report some fields as 'No CUDA'
 | |
|     dynamic_cuda_fields = [
 | |
|         "cuda_runtime_version",
 | |
|         "nvidia_gpu_models",
 | |
|         "nvidia_driver_version",
 | |
|     ]
 | |
|     all_cuda_fields = dynamic_cuda_fields + ["cudnn_version"]
 | |
|     all_dynamic_cuda_fields_missing = all(mutable_dict[field] is None for field in dynamic_cuda_fields)
 | |
|     if TORCH_AVAILABLE and not torch.cuda.is_available() and all_dynamic_cuda_fields_missing:
 | |
|         for field in all_cuda_fields:
 | |
|             mutable_dict[field] = "No CUDA"
 | |
|         if envinfo.cuda_compiled_version is None:
 | |
|             mutable_dict["cuda_compiled_version"] = "None"
 | |
| 
 | |
|     # Replace True with Yes, False with No
 | |
|     mutable_dict = replace_bools(mutable_dict)
 | |
| 
 | |
|     # Replace all None objects with 'Could not collect'
 | |
|     mutable_dict = replace_nones(mutable_dict)
 | |
| 
 | |
|     # If either of these are '', replace with 'No relevant packages'
 | |
|     mutable_dict["pip_packages"] = replace_if_empty(mutable_dict["pip_packages"])
 | |
|     mutable_dict["conda_packages"] = replace_if_empty(mutable_dict["conda_packages"])
 | |
| 
 | |
|     # Tag conda and pip packages with a prefix
 | |
|     # If they were previously None, they'll show up as ie '[conda] Could not collect'
 | |
|     if mutable_dict["pip_packages"]:
 | |
|         mutable_dict["pip_packages"] = prepend(mutable_dict["pip_packages"], "[{}] ".format(envinfo.pip_version))
 | |
|     if mutable_dict["conda_packages"]:
 | |
|         mutable_dict["conda_packages"] = prepend(mutable_dict["conda_packages"], "[conda] ")
 | |
|     mutable_dict["cpu_info"] = envinfo.cpu_info
 | |
|     return env_info_fmt.format(**mutable_dict)
 | |
| 
 | |
| 
 | |
| def get_pretty_env_info():
 | |
|     return pretty_str(get_env_info())
 | |
| 
 | |
| 
 | |
| def main():
 | |
|     print("Collecting environment information...")
 | |
|     output = get_pretty_env_info()
 | |
|     print(output)
 | |
| 
 | |
|     if TORCH_AVAILABLE and hasattr(torch, "utils") and hasattr(torch.utils, "_crash_handler"):
 | |
|         minidump_dir = torch.utils._crash_handler.DEFAULT_MINIDUMP_DIR
 | |
|         if sys.platform == "linux" and os.path.exists(minidump_dir):
 | |
|             dumps = [os.path.join(minidump_dir, dump) for dump in os.listdir(minidump_dir)]
 | |
|             latest = max(dumps, key=os.path.getctime)
 | |
|             ctime = os.path.getctime(latest)
 | |
|             creation_time = datetime.datetime.fromtimestamp(ctime).strftime("%Y-%m-%d %H:%M:%S")
 | |
|             msg = (
 | |
|                 "\n*** Detected a minidump at {} created on {}, ".format(latest, creation_time)
 | |
|                 + "if this is related to your bug please include it when you file a report ***"
 | |
|             )
 | |
|             print(msg, file=sys.stderr)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     main()
 |