Files
FastDeploy/fastdeploy/model_executor/models/qwen2.py
littledgg 59071268b6 [Executor] Move forward_meta.py to fastdeploy/model_executor (#2774)
* Use PEP 563 in attention.py and fix conflict

* merge commit

* Change what was left out last time
2025-07-10 20:36:51 +08:00

433 lines
13 KiB
Python

"""
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from __future__ import annotations
from functools import partial
import paddle
from paddle import nn
from paddleformers.transformers import PretrainedModel
from paddleformers.utils.log import logger
from fastdeploy.config import FDConfig, ModelConfig
from fastdeploy.model_executor.graph_optimization.decorator import \
support_graph_optimization
from fastdeploy.model_executor.layers.activation import SiluAndMul
from fastdeploy.model_executor.layers.attention.attention import Attention
from fastdeploy.model_executor.layers.embeddings import VocabParallelEmbedding
from fastdeploy.model_executor.layers.linear import (
MergedColumnParallelLinear, QKVParallelLinear, RowParallelLinear)
from fastdeploy.model_executor.layers.lm_head import ParallelLMHead
from fastdeploy.model_executor.layers.normalization import RMSNorm
from fastdeploy.model_executor.models.model_base import ModelForCasualLM
from fastdeploy.model_executor.forward_meta import ForwardMeta
class Qwen2MLP(nn.Layer):
"""
"""
def __init__(
self,
fd_config: FDConfig,
prefix: str = "",
) -> None:
super().__init__()
self.nranks = fd_config.parallel_config.tensor_parallel_degree
self.gate_up_proj = MergedColumnParallelLinear(
fd_config=fd_config,
prefix=f"{prefix}.up_gate_proj",
input_size=fd_config.model_config.hidden_size,
output_size=fd_config.model_config.ffn_hidden_size * 2,
with_bias=False,
activation=fd_config.model_config.hidden_act,
)
self.down_proj = RowParallelLinear(
fd_config=fd_config,
prefix=f"{prefix}.down_proj",
input_size=fd_config.model_config.ffn_hidden_size,
output_size=fd_config.model_config.hidden_size,
with_bias=False,
)
self.act_fn = SiluAndMul(
fd_config=fd_config,
bias=getattr(self.gate_up_proj, "linear_bias", None),
act_method=fd_config.model_config.hidden_act,
)
def load_state_dict(self, state_dict):
"""
"""
self.gate_up_proj.load_state_dict(state_dict)
self.down_proj.load_state_dict(state_dict)
def forward(self, x):
"""
"""
gate_up_out = self.gate_up_proj(x)
act_out = self.act_fn(gate_up_out)
down_out = self.down_proj(act_out)
return down_out
class Qwen2Attention(nn.Layer):
"""
"""
def __init__(self,
fd_config: FDConfig,
layer_id: int,
prefix: str = "") -> None:
super().__init__()
self.qkv_proj = QKVParallelLinear(fd_config=fd_config,
prefix=f"{prefix}.qkv_proj",
with_bias=True)
self.o_proj = RowParallelLinear(
fd_config=fd_config,
prefix=f"{prefix}.o_proj",
input_size=fd_config.model_config.hidden_size,
output_size=fd_config.model_config.hidden_size,
)
self.attn = Attention(fd_config=fd_config,
layer_id=layer_id,
prefix=prefix,
use_neox_rotary_style=True)
def load_state_dict(self, state_dict):
"""
"""
self.qkv_proj.load_state_dict(state_dict)
self.o_proj.load_state_dict(state_dict)
def forward(
self,
forward_meta: ForwardMeta,
hidden_states: paddle.Tensor,
):
"""
"""
qkv_out = self.qkv_proj(hidden_states)
atten_out = self.attn(
qkv=qkv_out,
forward_meta=forward_meta,
)
output = self.o_proj(atten_out)
return output
class Qwen2DecoderLayer(nn.Layer):
"""
"""
def __init__(
self,
fd_config: FDConfig,
prefix: str = "",
) -> None:
super().__init__()
layer_id = int(prefix.split(sep='.')[-1])
self.self_attn = Qwen2Attention(
fd_config=fd_config,
layer_id=layer_id,
prefix=f"{prefix}.self_attn",
)
self.mlp = Qwen2MLP(
fd_config=fd_config,
prefix=f"{prefix}.mlp",
)
self.input_layernorm = RMSNorm(
fd_config,
hidden_size=fd_config.model_config.hidden_size,
eps=fd_config.model_config.rms_norm_eps,
prefix=f"{prefix}.input_layernorm",
)
self.post_attention_layernorm = RMSNorm(
fd_config,
hidden_size=fd_config.model_config.hidden_size,
eps=fd_config.model_config.rms_norm_eps,
prefix=f"{prefix}.post_attention_layernorm",
)
def load_state_dict(self, state_dict):
"""
"""
self.self_attn.load_state_dict(state_dict)
self.mlp.load_state_dict(state_dict)
self.input_layernorm.load_state_dict(state_dict)
self.post_attention_layernorm.load_state_dict(state_dict)
def forward(
self,
forward_meta: ForwardMeta,
hidden_states: paddle.Tensor,
residual: paddle.Tensor = None,
):
"""
"""
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(
hidden_states, residual)
hidden_states = self.self_attn(
hidden_states=hidden_states,
forward_meta=forward_meta,
)
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(
hidden_states, residual)
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
@support_graph_optimization
class Qwen2Model(nn.Layer):
"""
"""
def __init__(
self,
fd_config: FDConfig = None,
):
"""
Initializer for the Qwen2Model class.
Args:
"""
super().__init__()
self.num_layers = fd_config.model_config.num_layers
fd_config.model_config.prefix_name = "qwen2"
self.embeddings = VocabParallelEmbedding(
fd_config=fd_config,
num_embeddings=fd_config.model_config.vocab_size,
embedding_dim=fd_config.model_config.hidden_size,
params_dtype=paddle.get_default_dtype,
prefix=(f"{fd_config.model_config.prefix_name}.embed_tokens"),
)
self.layers = nn.LayerList([
Qwen2DecoderLayer(
fd_config=fd_config,
prefix=f"{fd_config.model_config.prefix_name}.layers.{i}")
for i in range(self.num_layers)
])
self.norm = RMSNorm(
fd_config,
hidden_size=fd_config.model_config.hidden_size,
eps=fd_config.model_config.rms_norm_eps,
prefix=f"{fd_config.model_config.prefix_name}.norm",
)
def load_state_dict(self, state_dict):
"""
Load model parameters from a given state dictionary.
Args:
state_dict (dict[str, np.ndarray | paddle.Tensor]):
A dictionary containing model parameters, where keys are parameter names
and values are NumPy arrays or PaddlePaddle tensors.
"""
self.embeddings.load_state_dict(state_dict)
self.norm.load_state_dict(state_dict)
for i in range(self.num_layers):
logger.info(f"Start load layer {i}")
self.layers[i].load_state_dict(state_dict)
def forward(
self,
ids_remove_padding: paddle.Tensor,
forward_meta: ForwardMeta,
):
"""
"""
hidden_states = self.embeddings(ids_remove_padding=ids_remove_padding)
residual = None
for i in range(self.num_layers):
hidden_states, residual = self.layers[i](forward_meta,
hidden_states, residual)
hidden_states = hidden_states + residual
out = self.norm(hidden_states)
return out
class Qwen2ForCausalLM(ModelForCasualLM):
"""
Qwen2ForCausalLM
"""
def __init__(self, fd_config: FDConfig):
"""
Args:
fd_config (FDConfig): Configurations for the LLM model.
"""
super(Qwen2ForCausalLM, self).__init__(fd_config)
self.fd_config =fd_config
self.model = Qwen2Model(fd_config=fd_config)
self.ori_vocab_size = fd_config.model_config.ori_vocab_size
self.lm_head = ParallelLMHead(
fd_config=fd_config,
embedding_dim=fd_config.model_config.hidden_size,
num_embeddings=fd_config.model_config.vocab_size,
prefix="lm_head",
)
@classmethod
def name(self):
"""
"""
return "Qwen2ForCausalLM"
@paddle.no_grad()
def set_state_dict(self, state_dict):
"""
Load model parameters from a given state dictionary.
Args:
state_dict (dict[str, np.ndarray | paddle.Tensor]):
A dictionary containing model parameters, where keys are parameter names
and values are NumPy arrays or PaddlePaddle tensors.
"""
self.model.load_state_dict(state_dict)
self.lm_head.load_state_dict(state_dict)
def compute_logits(self, hidden_states: paddle.Tensor):
"""
"""
logits = self.lm_head(hidden_states)
logits = paddle.cast(logits, paddle.float32)
logits[:, self.ori_vocab_size:] = -float("inf")
return logits
def forward(
self,
ids_remove_padding: paddle.Tensor,
forward_meta: ForwardMeta,
):
"""
"""
hidden_states = self.model(ids_remove_padding=ids_remove_padding,
forward_meta=forward_meta)
return hidden_states
class Qwen2PretrainedModel(PretrainedModel):
"""
Qwen2PretrainedModel
"""
config_class = FDConfig
def _init_weight(self, layer):
"""
_init_weight
"""
return None
@classmethod
def _get_tensor_parallel_mappings(cls, config: ModelConfig, is_split=True):
from paddleformers.transformers.conversion_utils import \
split_or_merge_func
fn = split_or_merge_func(
is_split=is_split,
tensor_parallel_degree=config.tensor_parallel_degree,
tensor_parallel_rank=config.tensor_parallel_rank,
num_attention_heads=config.num_attention_heads,
)
def get_tensor_parallel_split_mappings(num_layers):
final_actions = {}
base_actions = {
"lm_head.weight": partial(fn, is_column=True),
# Row Linear
"embed_tokens.weight": partial(fn, is_column=False),
"layers.0.self_attn.o_proj.weight": partial(fn,
is_column=False),
"layers.0.mlp.down_proj.weight": partial(fn, is_column=False),
}
# Column Linear
if config.fuse_attention_qkv:
base_actions["layers.0.self_attn.qkv_proj.weight"] = partial(
fn, is_column=True)
else:
base_actions["layers.0.self_attn.q_proj.weight"] = partial(
fn, is_column=True)
base_actions["layers.0.self_attn.q_proj.bias"] = partial(
fn, is_column=True)
# if we have enough num_key_value_heads to split, then split it.
if config.num_key_value_heads % config.tensor_parallel_degree == 0:
base_actions["layers.0.self_attn.k_proj.weight"] = partial(
fn, is_column=True)
base_actions["layers.0.self_attn.v_proj.weight"] = partial(
fn, is_column=True)
base_actions["layers.0.self_attn.k_proj.bias"] = partial(
fn, is_column=True)
base_actions["layers.0.self_attn.v_proj.bias"] = partial(
fn, is_column=True)
base_actions["layers.0.mlp.gate_proj.weight"] = partial(
fn, is_column=True)
base_actions["layers.0.mlp.up_proj.weight"] = partial(
fn, is_column=True)
for key, action in base_actions.items():
if "layers.0." in key:
for i in range(num_layers):
final_actions[key.replace("layers.0.",
f"layers.{i}.")] = action
final_actions[key] = action
return final_actions
mappings = get_tensor_parallel_split_mappings(config.num_layers)
return mappings