Files
FastDeploy/fastdeploy/vision/ocr/ppocr/recognizer.h
yunyaoXYY 58d63f3e90 [Other] Add detection, segmentation and OCR examples for Ascend deploy. (#983)
* Add Huawei Ascend NPU deploy through PaddleLite CANN

* Add NNAdapter interface for paddlelite

* Modify Huawei Ascend Cmake

* Update way for compiling Huawei Ascend NPU deployment

* remove UseLiteBackend in UseCANN

* Support compile python whlee

* Change names of nnadapter API

* Add nnadapter pybind and remove useless API

* Support Python deployment on Huawei Ascend NPU

* Add models suppor for ascend

* Add PPOCR rec reszie for ascend

* fix conflict for ascend

* Rename CANN to Ascend

* Rename CANN to Ascend

* Improve ascend

* fix ascend bug

* improve ascend docs

* improve ascend docs

* improve ascend docs

* Improve Ascend

* Improve Ascend

* Move ascend python demo

* Imporve ascend

* Improve ascend

* Improve ascend

* Improve ascend

* Improve ascend

* Imporve ascend

* Imporve ascend

* Improve ascend

* acc eval script

* acc eval

* remove acc_eval from branch huawei

* Add detection and segmentation examples for Ascend deployment

* Add detection and segmentation examples for Ascend deployment

* Add PPOCR example for ascend deploy

* Imporve paddle lite compiliation

* Add FlyCV doc

* Add FlyCV doc

* Add FlyCV doc

* Imporve Ascend docs

* Imporve Ascend docs
2023-01-04 10:01:23 +08:00

89 lines
4.1 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_postprocess_op.h"
#include "fastdeploy/vision/ocr/ppocr/rec_preprocessor.h"
#include "fastdeploy/vision/ocr/ppocr/rec_postprocessor.h"
namespace fastdeploy {
namespace vision {
/** \brief All OCR series model APIs are defined inside this namespace
*
*/
namespace ocr {
/*! @brief Recognizer object is used to load the recognition model provided by PaddleOCR.
*/
class FASTDEPLOY_DECL Recognizer : public FastDeployModel {
public:
Recognizer();
/** \brief Set path of model file, and the configuration of runtime
*
* \param[in] model_file Path of model file, e.g ./ch_PP-OCRv3_rec_infer/model.pdmodel.
* \param[in] params_file Path of parameter file, e.g ./ch_PP-OCRv3_rec_infer/model.pdiparams, if the model format is ONNX, this parameter will be ignored.
* \param[in] label_path Path of label file used by OCR recognition model. e.g ./ppocr_keys_v1.txt
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`.
* \param[in] model_format Model format of the loaded model, default is Paddle format.
*/
Recognizer(const std::string& model_file, const std::string& params_file = "",
const std::string& label_path = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE);
/// Get model's name
std::string ModelName() const { return "ppocr/ocr_rec"; }
/** \brief Predict the input image and get OCR recognition model result.
*
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
* \param[in] text The text result of rec model will be written into this parameter.
* \param[in] rec_score The sccore result of rec model will be written into this parameter.
* \return true if the prediction is successed, otherwise false.
*/
virtual bool Predict(const cv::Mat& img, std::string* text, float* rec_score);
/** \brief BatchPredict the input image and get OCR recognition model result.
*
* \param[in] images The list of input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
* \param[in] texts The list of text results of rec model will be written into this vector.
* \param[in] rec_scores The list of sccore result of rec model will be written into this vector.
* \return true if the prediction is successed, otherwise false.
*/
virtual bool BatchPredict(const std::vector<cv::Mat>& images,
std::vector<std::string>* texts, std::vector<float>* rec_scores);
virtual bool BatchPredict(const std::vector<cv::Mat>& images,
std::vector<std::string>* texts, std::vector<float>* rec_scores,
size_t start_index, size_t end_index,
const std::vector<int>& indices);
/// Get preprocessor reference of DBDetectorPreprocessor
virtual RecognizerPreprocessor& GetPreprocessor() {
return preprocessor_;
}
/// Get postprocessor reference of DBDetectorPostprocessor
virtual RecognizerPostprocessor& GetPostprocessor() {
return postprocessor_;
}
private:
bool Initialize();
RecognizerPreprocessor preprocessor_;
RecognizerPostprocessor postprocessor_;
};
} // namespace ocr
} // namespace vision
} // namespace fastdeploy