mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-11-01 04:12:58 +08:00 
			
		
		
		
	 45865c8724
			
		
	
	45865c8724
	
	
	
		
			
			* [FlyCV] Bump up FlyCV -> official release 1.0.0 * XPU to KunlunXin * update * update model link * update doc * update device * update code * useless code Co-authored-by: DefTruth <qiustudent_r@163.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
		
			
				
	
	
		
			90 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			90 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/vision/ocr/ppocr/dbdetector.h"
 | |
| #include "fastdeploy/utils/perf.h"
 | |
| #include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| namespace vision {
 | |
| namespace ocr {
 | |
| 
 | |
| DBDetector::DBDetector() {}
 | |
| DBDetector::DBDetector(const std::string& model_file,
 | |
|                        const std::string& params_file,
 | |
|                        const RuntimeOption& custom_option,
 | |
|                        const ModelFormat& model_format) {
 | |
|   if (model_format == ModelFormat::ONNX) {
 | |
|     valid_cpu_backends = {Backend::ORT,
 | |
|                           Backend::OPENVINO};  
 | |
|     valid_gpu_backends = {Backend::ORT, Backend::TRT};  
 | |
|   } else {
 | |
|     valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::OPENVINO, Backend::LITE};
 | |
|     valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
 | |
|     valid_kunlunxin_backends = {Backend::LITE};
 | |
|     valid_ascend_backends = {Backend::LITE};
 | |
|   }
 | |
| 
 | |
|   runtime_option = custom_option;
 | |
|   runtime_option.model_format = model_format;
 | |
|   runtime_option.model_file = model_file;
 | |
|   runtime_option.params_file = params_file;
 | |
|   initialized = Initialize();
 | |
| }
 | |
| 
 | |
| // Init
 | |
| bool DBDetector::Initialize() {
 | |
|   if (!InitRuntime()) {
 | |
|     FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool DBDetector::Predict(const cv::Mat& img,
 | |
|                          std::vector<std::array<int, 8>>* boxes_result) {
 | |
|   std::vector<std::vector<std::array<int, 8>>> det_results;
 | |
|   if (!BatchPredict({img}, &det_results)) {
 | |
|     return false;
 | |
|   }
 | |
|   *boxes_result = std::move(det_results[0]);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool DBDetector::BatchPredict(const std::vector<cv::Mat>& images,
 | |
|                               std::vector<std::vector<std::array<int, 8>>>* det_results) {
 | |
|   std::vector<FDMat> fd_images = WrapMat(images);
 | |
|   std::vector<std::array<int, 4>> batch_det_img_info;
 | |
|   if (!preprocessor_.Run(&fd_images, &reused_input_tensors_, &batch_det_img_info)) {
 | |
|     FDERROR << "Failed to preprocess input image." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
 | |
|   if (!Infer(reused_input_tensors_, &reused_output_tensors_)) {
 | |
|     FDERROR << "Failed to inference by runtime." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!postprocessor_.Run(reused_output_tensors_, det_results, batch_det_img_info)) {
 | |
|     FDERROR << "Failed to postprocess the inference cls_results by runtime." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| }  // namesapce ocr
 | |
| }  // namespace vision
 | |
| }  // namespace fastdeploy
 |