mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00

* Add Huawei Ascend NPU deploy through PaddleLite CANN * Add NNAdapter interface for paddlelite * Modify Huawei Ascend Cmake * Update way for compiling Huawei Ascend NPU deployment * remove UseLiteBackend in UseCANN * Support compile python whlee * Change names of nnadapter API * Add nnadapter pybind and remove useless API * Support Python deployment on Huawei Ascend NPU * Add models suppor for ascend * Add PPOCR rec reszie for ascend * fix conflict for ascend * Rename CANN to Ascend * Rename CANN to Ascend * Improve ascend * fix ascend bug * improve ascend docs * improve ascend docs * improve ascend docs * Improve Ascend * Improve Ascend * Move ascend python demo * Imporve ascend * Improve ascend * Improve ascend * Improve ascend * Improve ascend * Imporve ascend * Imporve ascend * Improve ascend * acc eval script * acc eval * remove acc_eval from branch huawei * Add detection and segmentation examples for Ascend deployment * Add detection and segmentation examples for Ascend deployment * Add PPOCR example for ascend deploy * Imporve paddle lite compiliation * Add FlyCV doc * Add FlyCV doc * Add FlyCV doc * Imporve Ascend docs * Imporve Ascend docs
179 lines
6.7 KiB
Python
Executable File
179 lines
6.7 KiB
Python
Executable File
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
|
||
import fastdeploy as fd
|
||
import cv2
|
||
import os
|
||
|
||
|
||
def parse_arguments():
|
||
import argparse
|
||
import ast
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument(
|
||
"--det_model", required=True, help="Path of Detection model of PPOCR.")
|
||
parser.add_argument(
|
||
"--cls_model",
|
||
required=True,
|
||
help="Path of Classification model of PPOCR.")
|
||
parser.add_argument(
|
||
"--rec_model",
|
||
required=True,
|
||
help="Path of Recognization model of PPOCR.")
|
||
parser.add_argument(
|
||
"--rec_label_file",
|
||
required=True,
|
||
help="Path of Recognization model of PPOCR.")
|
||
parser.add_argument(
|
||
"--image", type=str, required=True, help="Path of test image file.")
|
||
parser.add_argument(
|
||
"--device",
|
||
type=str,
|
||
default='cpu',
|
||
help="Type of inference device, support 'cpu', 'kunlunxin' or 'gpu'.")
|
||
parser.add_argument(
|
||
"--backend",
|
||
type=str,
|
||
default="default",
|
||
help="Type of inference backend, support ort/trt/paddle/openvino, default 'openvino' for cpu, 'tensorrt' for gpu"
|
||
)
|
||
parser.add_argument(
|
||
"--device_id",
|
||
type=int,
|
||
default=0,
|
||
help="Define which GPU card used to run model.")
|
||
parser.add_argument(
|
||
"--cpu_thread_num",
|
||
type=int,
|
||
default=9,
|
||
help="Number of threads while inference on CPU.")
|
||
return parser.parse_args()
|
||
|
||
|
||
def build_option(args):
|
||
option = fd.RuntimeOption()
|
||
if args.device.lower() == "gpu":
|
||
option.use_gpu(0)
|
||
|
||
option.set_cpu_thread_num(args.cpu_thread_num)
|
||
|
||
if args.device.lower() == "kunlunxin":
|
||
option.use_kunlunxin()
|
||
return option
|
||
|
||
if args.device.lower() == "ascend":
|
||
option.use_ascend()
|
||
return option
|
||
|
||
if args.backend.lower() == "trt":
|
||
assert args.device.lower(
|
||
) == "gpu", "TensorRT backend require inference on device GPU."
|
||
option.use_trt_backend()
|
||
elif args.backend.lower() == "pptrt":
|
||
assert args.device.lower(
|
||
) == "gpu", "Paddle-TensorRT backend require inference on device GPU."
|
||
option.use_trt_backend()
|
||
option.enable_paddle_trt_collect_shape()
|
||
option.enable_paddle_to_trt()
|
||
elif args.backend.lower() == "ort":
|
||
option.use_ort_backend()
|
||
elif args.backend.lower() == "paddle":
|
||
option.use_paddle_infer_backend()
|
||
elif args.backend.lower() == "openvino":
|
||
assert args.device.lower(
|
||
) == "cpu", "OpenVINO backend require inference on device CPU."
|
||
option.use_openvino_backend()
|
||
return option
|
||
|
||
|
||
args = parse_arguments()
|
||
|
||
# Detection模型, 检测文字框
|
||
det_model_file = os.path.join(args.det_model, "inference.pdmodel")
|
||
det_params_file = os.path.join(args.det_model, "inference.pdiparams")
|
||
# Classification模型,方向分类,可选
|
||
cls_model_file = os.path.join(args.cls_model, "inference.pdmodel")
|
||
cls_params_file = os.path.join(args.cls_model, "inference.pdiparams")
|
||
# Recognition模型,文字识别模型
|
||
rec_model_file = os.path.join(args.rec_model, "inference.pdmodel")
|
||
rec_params_file = os.path.join(args.rec_model, "inference.pdiparams")
|
||
rec_label_file = args.rec_label_file
|
||
|
||
# 对于三个模型,均采用同样的部署配置
|
||
# 用户也可根据自行需求分别配置
|
||
runtime_option = build_option(args)
|
||
|
||
# PPOCR的cls和rec模型现在已经支持推理一个Batch的数据
|
||
# 定义下面两个变量后, 可用于设置trt输入shape, 并在PPOCR模型初始化后, 完成Batch推理设置
|
||
# 当用户要把PP-OCR部署在对动态shape推理支持有限的设备上时,(例如华为昇腾)
|
||
# 需要把cls_batch_size和rec_batch_size都设置为1.
|
||
cls_batch_size = 1
|
||
rec_batch_size = 6
|
||
|
||
# 当使用TRT时,分别给三个模型的runtime设置动态shape,并完成模型的创建.
|
||
# 注意: 需要在检测模型创建完成后,再设置分类模型的动态输入并创建分类模型, 识别模型同理.
|
||
# 如果用户想要自己改动检测模型的输入shape, 我们建议用户把检测模型的长和高设置为32的倍数.
|
||
det_option = runtime_option
|
||
det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
|
||
[1, 3, 960, 960])
|
||
# 用户可以把TRT引擎文件保存至本地
|
||
# det_option.set_trt_cache_file(args.det_model + "/det_trt_cache.trt")
|
||
det_model = fd.vision.ocr.DBDetector(
|
||
det_model_file, det_params_file, runtime_option=det_option)
|
||
|
||
cls_option = runtime_option
|
||
cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
|
||
[cls_batch_size, 3, 48, 320],
|
||
[cls_batch_size, 3, 48, 1024])
|
||
# 用户可以把TRT引擎文件保存至本地
|
||
# cls_option.set_trt_cache_file(args.cls_model + "/cls_trt_cache.trt")
|
||
cls_model = fd.vision.ocr.Classifier(
|
||
cls_model_file, cls_params_file, runtime_option=cls_option)
|
||
|
||
rec_option = runtime_option
|
||
rec_option.set_trt_input_shape("x", [1, 3, 48, 10],
|
||
[rec_batch_size, 3, 48, 320],
|
||
[rec_batch_size, 3, 48, 2304])
|
||
# 用户可以把TRT引擎文件保存至本地
|
||
# rec_option.set_trt_cache_file(args.rec_model + "/rec_trt_cache.trt")
|
||
rec_model = fd.vision.ocr.Recognizer(
|
||
rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option)
|
||
|
||
# 当用户要把PP-OCR部署在对动态shape推理支持有限的设备上时,(例如华为昇腾)
|
||
# 需要使用下行代码, 来启用rec模型的静态shape推理.
|
||
# rec_model.preprocessor.static_shape_infer = True
|
||
|
||
# 创建PP-OCR,串联3个模型,其中cls_model可选,如无需求,可设置为None
|
||
ppocr_v3 = fd.vision.ocr.PPOCRv3(
|
||
det_model=det_model, cls_model=cls_model, rec_model=rec_model)
|
||
|
||
# 给cls和rec模型设置推理时的batch size
|
||
# 此值能为-1, 和1到正无穷
|
||
# 当此值为-1时, cls和rec模型的batch size将默认和det模型检测出的框的数量相同
|
||
ppocr_v3.cls_batch_size = cls_batch_size
|
||
ppocr_v3.rec_batch_size = rec_batch_size
|
||
|
||
# 预测图片准备
|
||
im = cv2.imread(args.image)
|
||
|
||
#预测并打印结果
|
||
result = ppocr_v3.predict(im)
|
||
|
||
print(result)
|
||
|
||
# 可视化结果
|
||
vis_im = fd.vision.vis_ppocr(im, result)
|
||
cv2.imwrite("visualized_result.jpg", vis_im)
|
||
print("Visualized result save in ./visualized_result.jpg")
|