Files
FastDeploy/examples/vision/ocr/PP-OCRv2/python/infer.py
yunyaoXYY 58d63f3e90 [Other] Add detection, segmentation and OCR examples for Ascend deploy. (#983)
* Add Huawei Ascend NPU deploy through PaddleLite CANN

* Add NNAdapter interface for paddlelite

* Modify Huawei Ascend Cmake

* Update way for compiling Huawei Ascend NPU deployment

* remove UseLiteBackend in UseCANN

* Support compile python whlee

* Change names of nnadapter API

* Add nnadapter pybind and remove useless API

* Support Python deployment on Huawei Ascend NPU

* Add models suppor for ascend

* Add PPOCR rec reszie for ascend

* fix conflict for ascend

* Rename CANN to Ascend

* Rename CANN to Ascend

* Improve ascend

* fix ascend bug

* improve ascend docs

* improve ascend docs

* improve ascend docs

* Improve Ascend

* Improve Ascend

* Move ascend python demo

* Imporve ascend

* Improve ascend

* Improve ascend

* Improve ascend

* Improve ascend

* Imporve ascend

* Imporve ascend

* Improve ascend

* acc eval script

* acc eval

* remove acc_eval from branch huawei

* Add detection and segmentation examples for Ascend deployment

* Add detection and segmentation examples for Ascend deployment

* Add PPOCR example for ascend deploy

* Imporve paddle lite compiliation

* Add FlyCV doc

* Add FlyCV doc

* Add FlyCV doc

* Imporve Ascend docs

* Imporve Ascend docs
2023-01-04 10:01:23 +08:00

179 lines
6.7 KiB
Python
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--det_model", required=True, help="Path of Detection model of PPOCR.")
parser.add_argument(
"--cls_model",
required=True,
help="Path of Classification model of PPOCR.")
parser.add_argument(
"--rec_model",
required=True,
help="Path of Recognization model of PPOCR.")
parser.add_argument(
"--rec_label_file",
required=True,
help="Path of Recognization model of PPOCR.")
parser.add_argument(
"--image", type=str, required=True, help="Path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu', 'kunlunxin' or 'gpu'.")
parser.add_argument(
"--backend",
type=str,
default="default",
help="Type of inference backend, support ort/trt/paddle/openvino, default 'openvino' for cpu, 'tensorrt' for gpu"
)
parser.add_argument(
"--device_id",
type=int,
default=0,
help="Define which GPU card used to run model.")
parser.add_argument(
"--cpu_thread_num",
type=int,
default=9,
help="Number of threads while inference on CPU.")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu(0)
option.set_cpu_thread_num(args.cpu_thread_num)
if args.device.lower() == "kunlunxin":
option.use_kunlunxin()
return option
if args.device.lower() == "ascend":
option.use_ascend()
return option
if args.backend.lower() == "trt":
assert args.device.lower(
) == "gpu", "TensorRT backend require inference on device GPU."
option.use_trt_backend()
elif args.backend.lower() == "pptrt":
assert args.device.lower(
) == "gpu", "Paddle-TensorRT backend require inference on device GPU."
option.use_trt_backend()
option.enable_paddle_trt_collect_shape()
option.enable_paddle_to_trt()
elif args.backend.lower() == "ort":
option.use_ort_backend()
elif args.backend.lower() == "paddle":
option.use_paddle_infer_backend()
elif args.backend.lower() == "openvino":
assert args.device.lower(
) == "cpu", "OpenVINO backend require inference on device CPU."
option.use_openvino_backend()
return option
args = parse_arguments()
# Detection模型, 检测文字框
det_model_file = os.path.join(args.det_model, "inference.pdmodel")
det_params_file = os.path.join(args.det_model, "inference.pdiparams")
# Classification模型方向分类可选
cls_model_file = os.path.join(args.cls_model, "inference.pdmodel")
cls_params_file = os.path.join(args.cls_model, "inference.pdiparams")
# Recognition模型文字识别模型
rec_model_file = os.path.join(args.rec_model, "inference.pdmodel")
rec_params_file = os.path.join(args.rec_model, "inference.pdiparams")
rec_label_file = args.rec_label_file
# 对于三个模型,均采用同样的部署配置
# 用户也可根据自行需求分别配置
runtime_option = build_option(args)
# PPOCR的cls和rec模型现在已经支持推理一个Batch的数据
# 定义下面两个变量后, 可用于设置trt输入shape, 并在PPOCR模型初始化后, 完成Batch推理设置
# 当用户要把PP-OCR部署在对动态shape推理支持有限的设备上时,(例如华为昇腾)
# 需要把cls_batch_size和rec_batch_size都设置为1.
cls_batch_size = 1
rec_batch_size = 6
# 当使用TRT时分别给三个模型的runtime设置动态shape,并完成模型的创建.
# 注意: 需要在检测模型创建完成后,再设置分类模型的动态输入并创建分类模型, 识别模型同理.
# 如果用户想要自己改动检测模型的输入shape, 我们建议用户把检测模型的长和高设置为32的倍数.
det_option = runtime_option
det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
[1, 3, 960, 960])
# 用户可以把TRT引擎文件保存至本地
# det_option.set_trt_cache_file(args.det_model + "/det_trt_cache.trt")
det_model = fd.vision.ocr.DBDetector(
det_model_file, det_params_file, runtime_option=det_option)
cls_option = runtime_option
cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
[cls_batch_size, 3, 48, 320],
[cls_batch_size, 3, 48, 1024])
# 用户可以把TRT引擎文件保存至本地
# cls_option.set_trt_cache_file(args.cls_model + "/cls_trt_cache.trt")
cls_model = fd.vision.ocr.Classifier(
cls_model_file, cls_params_file, runtime_option=cls_option)
rec_option = runtime_option
rec_option.set_trt_input_shape("x", [1, 3, 32, 10],
[rec_batch_size, 3, 32, 320],
[rec_batch_size, 3, 32, 2304])
# 用户可以把TRT引擎文件保存至本地
# rec_option.set_trt_cache_file(args.rec_model + "/rec_trt_cache.trt")
rec_model = fd.vision.ocr.Recognizer(
rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option)
# 当用户要把PP-OCR部署在对动态shape推理支持有限的设备上时,(例如华为昇腾)
# 需要使用下行代码, 来启用rec模型的静态shape推理.
# rec_model.preprocessor.static_shape_infer = True
# 创建PP-OCR串联3个模型其中cls_model可选如无需求可设置为None
ppocr_v2 = fd.vision.ocr.PPOCRv2(
det_model=det_model, cls_model=cls_model, rec_model=rec_model)
# 给cls和rec模型设置推理时的batch size
# 此值能为-1, 和1到正无穷
# 当此值为-1时, cls和rec模型的batch size将默认和det模型检测出的框的数量相同
ppocr_v2.cls_batch_size = cls_batch_size
ppocr_v2.rec_batch_size = rec_batch_size
# 预测图片准备
im = cv2.imread(args.image)
#预测并打印结果
result = ppocr_v2.predict(im)
print(result)
# 可视化结果
vis_im = fd.vision.vis_ppocr(im, result)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")