Files
FastDeploy/examples/vision/detection/paddledetection
yunyaoXYY 58d63f3e90 [Other] Add detection, segmentation and OCR examples for Ascend deploy. (#983)
* Add Huawei Ascend NPU deploy through PaddleLite CANN

* Add NNAdapter interface for paddlelite

* Modify Huawei Ascend Cmake

* Update way for compiling Huawei Ascend NPU deployment

* remove UseLiteBackend in UseCANN

* Support compile python whlee

* Change names of nnadapter API

* Add nnadapter pybind and remove useless API

* Support Python deployment on Huawei Ascend NPU

* Add models suppor for ascend

* Add PPOCR rec reszie for ascend

* fix conflict for ascend

* Rename CANN to Ascend

* Rename CANN to Ascend

* Improve ascend

* fix ascend bug

* improve ascend docs

* improve ascend docs

* improve ascend docs

* Improve Ascend

* Improve Ascend

* Move ascend python demo

* Imporve ascend

* Improve ascend

* Improve ascend

* Improve ascend

* Improve ascend

* Imporve ascend

* Imporve ascend

* Improve ascend

* acc eval script

* acc eval

* remove acc_eval from branch huawei

* Add detection and segmentation examples for Ascend deployment

* Add detection and segmentation examples for Ascend deployment

* Add PPOCR example for ascend deploy

* Imporve paddle lite compiliation

* Add FlyCV doc

* Add FlyCV doc

* Add FlyCV doc

* Imporve Ascend docs

* Imporve Ascend docs
2023-01-04 10:01:23 +08:00
..
2022-12-27 10:50:28 +08:00
2022-12-28 10:46:55 +08:00

PaddleDetection模型部署

模型版本说明

支持模型列表

目前FastDeploy支持如下模型的部署

导出部署模型

在部署前需要先将PaddleDetection导出成部署模型导出步骤参考文档导出模型

注意

  • 在导出模型时不要进行NMS的去除操作正常导出即可
  • 如果用于跑原生TensorRT后端非Paddle Inference后端不要添加--trt参数
  • 导出模型时,不要添加fuse_normalize=True参数

下载预训练模型

为了方便开发者的测试下面提供了PaddleDetection导出的各系列模型开发者可直接下载使用。

其中精度指标来源于PaddleDetection中对各模型的介绍详情各参考PaddleDetection中的说明。

模型 参数大小 精度 备注
picodet_l_320_coco_lcnet 23MB Box AP 42.6%
ppyoloe_crn_l_300e_coco 200MB Box AP 51.4%
ppyoloe_plus_crn_m_80e_coco 83.3MB Box AP 49.8%
ppyolo_r50vd_dcn_1x_coco 180MB Box AP 44.8% 暂不支持TensorRT
ppyolov2_r101vd_dcn_365e_coco 282MB Box AP 49.7% 暂不支持TensorRT
yolov3_darknet53_270e_coco 237MB Box AP 39.1%
yolox_s_300e_coco 35MB Box AP 40.4%
faster_rcnn_r50_vd_fpn_2x_coco 160MB Box AP 40.8% 暂不支持TensorRT
mask_rcnn_r50_1x_coco 128M Box AP 37.4%, Mask AP 32.8% 暂不支持TensorRT、ORT
ssd_mobilenet_v1_300_120e_voc 24.9M Box AP 73.8% 暂不支持TensorRT、ORT
ssd_vgg16_300_240e_voc 106.5M Box AP 77.8% 暂不支持TensorRT、ORT
ssdlite_mobilenet_v1_300_coco 29.1M 暂不支持TensorRT、ORT
rtmdet_l_300e_coco 224M Box AP 51.2%
rtmdet_s_300e_coco 42M Box AP 44.5%
yolov5_l_300e_coco 183M Box AP 48.9%
yolov5_s_300e_coco 31M Box AP 37.6%
yolov6_l_300e_coco 229M Box AP 51.0%
yolov6_s_400e_coco 68M Box AP 43.4%
yolov7_l_300e_coco 145M Box AP 51.0%
yolov7_x_300e_coco 277M Box AP 53.0%

详细部署文档