Files
FastDeploy/examples/text/ernie-3.0/serving/seq_cls_grpc_client.py
heliqi 587ffd4caf [Serving]add ernie-3.0 demo (#399)
serving add ernie-3.0 demo
2022-10-20 15:29:47 +08:00

150 lines
5.5 KiB
Python
Executable File

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import numpy as np
import time
from typing import Optional
from tritonclient import utils as client_utils
from tritonclient.grpc import InferenceServerClient, InferInput, InferRequestedOutput, service_pb2_grpc, service_pb2
LOGGER = logging.getLogger("run_inference_on_triton")
class SyncGRPCTritonRunner:
DEFAULT_MAX_RESP_WAIT_S = 120
def __init__(
self,
server_url: str,
model_name: str,
model_version: str,
*,
verbose=False,
resp_wait_s: Optional[float]=None, ):
self._server_url = server_url
self._model_name = model_name
self._model_version = model_version
self._verbose = verbose
self._response_wait_t = self.DEFAULT_MAX_RESP_WAIT_S if resp_wait_s is None else resp_wait_s
self._client = InferenceServerClient(
self._server_url, verbose=self._verbose)
error = self._verify_triton_state(self._client)
if error:
raise RuntimeError(
f"Could not communicate to Triton Server: {error}")
LOGGER.debug(
f"Triton server {self._server_url} and model {self._model_name}:{self._model_version} "
f"are up and ready!")
model_config = self._client.get_model_config(self._model_name,
self._model_version)
model_metadata = self._client.get_model_metadata(self._model_name,
self._model_version)
LOGGER.info(f"Model config {model_config}")
LOGGER.info(f"Model metadata {model_metadata}")
self._inputs = {tm.name: tm for tm in model_metadata.inputs}
self._input_names = list(self._inputs)
self._outputs = {tm.name: tm for tm in model_metadata.outputs}
self._output_names = list(self._outputs)
self._outputs_req = [
InferRequestedOutput(name) for name in self._outputs
]
def Run(self, inputs):
"""
Args:
inputs: list, Each value corresponds to an input name of self._input_names
Returns:
results: dict, {name : numpy.array}
"""
infer_inputs = []
for idx, data in enumerate(inputs):
data = np.array(
[[x.encode('utf-8')] for x in data], dtype=np.object_)
infer_input = InferInput(self._input_names[idx], [len(data), 1],
"BYTES")
infer_input.set_data_from_numpy(data)
infer_inputs.append(infer_input)
results = self._client.infer(
model_name=self._model_name,
model_version=self._model_version,
inputs=infer_inputs,
outputs=self._outputs_req,
client_timeout=self._response_wait_t, )
results = {name: results.as_numpy(name) for name in self._output_names}
return results
def _verify_triton_state(self, triton_client):
if not triton_client.is_server_live():
return f"Triton server {self._server_url} is not live"
elif not triton_client.is_server_ready():
return f"Triton server {self._server_url} is not ready"
elif not triton_client.is_model_ready(self._model_name,
self._model_version):
return f"Model {self._model_name}:{self._model_version} is not ready"
return None
def test_tnews_dataset(runner):
from paddlenlp.datasets import load_dataset
dev_ds = load_dataset('clue', "tnews", splits='dev')
batches = []
labels = []
idx = 0
batch_size = 32
while idx < len(dev_ds):
data = []
label = []
for i in range(batch_size):
if idx + i >= len(dev_ds):
break
data.append(dev_ds[idx + i]["sentence"])
label.append(dev_ds[idx + i]["label"])
batches.append(data)
labels.append(np.array(label))
idx += batch_size
accuracy = 0
for i, data in enumerate(batches):
ret = runner.Run([data])
# print("ret:", ret)
accuracy += np.sum(labels[i] == ret["label"])
print("acc:", 1.0 * accuracy / len(dev_ds))
if __name__ == "__main__":
from paddlenlp.datasets import load_dataset
dev_ds = load_dataset('clue', "tnews", splits='dev')
model_name = "ernie_seqcls"
model_version = "1"
url = "localhost:8001"
runner = SyncGRPCTritonRunner(url, model_name, model_version)
texts = [["你家拆迁,要钱还是要房?答案一目了然", "军嫂探亲拧包入住,部队家属临时来队房标准有了规定,全面落实!"], [
"区块链投资心得,能做到就不会亏钱",
]]
for text in texts:
# input format:[input1, input2 ... inputn], n = len(self._input_names)
result = runner.Run([text])
print(result)
test_tnews_dataset(runner)