Files
FastDeploy/examples/runtime/cpp/infer_onnx_onnxruntime.cc
WJJ1995 4bbfd977c7 [Other] Add onnx_ort_runtime cpp/python demos (#565)
* add onnx_ort_runtime demo

* rm in requirements
2022-11-11 12:47:06 +08:00

64 lines
2.1 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/runtime.h"
namespace fd = fastdeploy;
int main(int argc, char* argv[]) {
std::string model_file = "mobilenetv2.onnx";
// setup option
fd::RuntimeOption runtime_option;
runtime_option.SetModelPath(model_file, "", fd::ModelFormat::ONNX);
runtime_option.UseOrtBackend();
runtime_option.SetCpuThreadNum(12);
// **** GPU ****
// To use GPU, use the following commented code
// runtime_option.UseGpu(0);
// init runtime
std::unique_ptr<fd::Runtime> runtime =
std::unique_ptr<fd::Runtime>(new fd::Runtime());
if (!runtime->Init(runtime_option)) {
std::cerr << "--- Init FastDeploy Runitme Failed! "
<< "\n--- Model: " << model_file << std::endl;
return -1;
} else {
std::cout << "--- Init FastDeploy Runitme Done! "
<< "\n--- Model: " << model_file << std::endl;
}
// init input tensor shape
fd::TensorInfo info = runtime->GetInputInfo(0);
info.shape = {1, 3, 224, 224};
std::vector<fd::FDTensor> input_tensors(1);
std::vector<fd::FDTensor> output_tensors(1);
std::vector<float> inputs_data;
inputs_data.resize(1 * 3 * 224 * 224);
for (size_t i = 0; i < inputs_data.size(); ++i) {
inputs_data[i] = std::rand() % 1000 / 1000.0f;
}
input_tensors[0].SetExternalData({1, 3, 224, 224}, fd::FDDataType::FP32, inputs_data.data());
//get input name
input_tensors[0].name = info.name;
runtime->Infer(input_tensors, &output_tensors);
output_tensors[0].PrintInfo();
return 0;
}