mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	 c8d6c8244e
			
		
	
	c8d6c8244e
	
	
	
		
			
			* add yolo cuda preprocessing * cmake build cuda src * yolov5 support cuda preprocessing * yolov5 cuda preprocessing configurable * yolov5 update get mat data api * yolov5 check cuda preprocess args * refactor cuda function name * yolo cuda preprocess padding value configurable * yolov5 release cuda memory * cuda preprocess pybind api update * move use_cuda_preprocessing option to yolov5 model * yolov5lite cuda preprocessing * yolov6 cuda preprocessing * yolov7 cuda preprocessing * yolov7_e2e cuda preprocessing * remove cuda preprocessing in runtime option * refine log and cmake variable name * fix model runtime ptr type Co-authored-by: Jason <jiangjiajun@baidu.com>
		
			
				
	
	
		
			112 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			112 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| #pragma once
 | |
| #include "fastdeploy/runtime.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| 
 | |
| /*! @brief Base model object for all the vision models
 | |
|  */
 | |
| class FASTDEPLOY_DECL FastDeployModel {
 | |
|  public:
 | |
|   /// Get model's name
 | |
|   virtual std::string ModelName() const { return "NameUndefined"; }
 | |
| 
 | |
|   /** \brief Inference the model by the runtime. This interface is included in the `Predict()` function, so we don't call `Infer()` directly in most common situation
 | |
|   */
 | |
|   virtual bool Infer(std::vector<FDTensor>& input_tensors,
 | |
|                      std::vector<FDTensor>* output_tensors);
 | |
| 
 | |
|   RuntimeOption runtime_option;
 | |
|   /** \brief Model's valid cpu backends. This member defined all the cpu backends have successfully tested for the model
 | |
|    */
 | |
|   std::vector<Backend> valid_cpu_backends = {Backend::ORT};
 | |
|   /** Model's valid gpu backends. This member defined all the gpu backends have successfully tested for the model
 | |
|    */
 | |
|   std::vector<Backend> valid_gpu_backends = {Backend::ORT};
 | |
|   /// Get number of inputs for this model
 | |
|   virtual int NumInputsOfRuntime() { return runtime_->NumInputs(); }
 | |
|   /// Get number of outputs for this model
 | |
|   virtual int NumOutputsOfRuntime() { return runtime_->NumOutputs(); }
 | |
|   /// Get input information for this model
 | |
|   virtual TensorInfo InputInfoOfRuntime(int index) {
 | |
|     return runtime_->GetInputInfo(index);
 | |
|   }
 | |
|   /// Get output information for this model
 | |
|   virtual TensorInfo OutputInfoOfRuntime(int index) {
 | |
|     return runtime_->GetOutputInfo(index);
 | |
|   }
 | |
|   /// Check if the model is initialized successfully
 | |
|   virtual bool Initialized() const {
 | |
|     return runtime_initialized_ && initialized;
 | |
|   }
 | |
| 
 | |
|   /** \brief This is a debug interface, used to record the time of backend runtime
 | |
|    *
 | |
|    * example code @code
 | |
|    * auto model = fastdeploy::vision::PPYOLOE("model.pdmodel", "model.pdiparams", "infer_cfg.yml");
 | |
|    * if (!model.Initialized()) {
 | |
|    *   std::cerr << "Failed to initialize." << std::endl;
 | |
|    *   return -1;
 | |
|    * }
 | |
|    * model.EnableRecordTimeOfRuntime();
 | |
|    * cv::Mat im = cv::imread("test.jpg");
 | |
|    * for (auto i = 0; i < 1000; ++i) {
 | |
|    *   fastdeploy::vision::DetectionResult result;
 | |
|    *   model.Predict(&im, &result);
 | |
|    * }
 | |
|    * model.PrintStatisInfoOfRuntime();
 | |
|    * @endcode After called the `PrintStatisInfoOfRuntime()`, the statistical information of runtime will be printed in the console
 | |
|    */
 | |
|   virtual void EnableRecordTimeOfRuntime() {
 | |
|     time_of_runtime_.clear();
 | |
|     std::vector<double>().swap(time_of_runtime_);
 | |
|     enable_record_time_of_runtime_ = true;
 | |
|   }
 | |
| 
 | |
|   /** \brief Disable to record the time of backend runtime, see `EnableRecordTimeOfRuntime()` for more detail
 | |
|   */
 | |
|   virtual void DisableRecordTimeOfRuntime() {
 | |
|     enable_record_time_of_runtime_ = false;
 | |
|   }
 | |
| 
 | |
|   /** \brief Print the statistic information of runtime in the console, see function `EnableRecordTimeOfRuntime()` for more detail
 | |
|   */
 | |
|   virtual std::map<std::string, float> PrintStatisInfoOfRuntime();
 | |
| 
 | |
|   /** \brief Check if the `EnableRecordTimeOfRuntime()` method is enabled.
 | |
|   */
 | |
|   virtual bool EnabledRecordTimeOfRuntime() {
 | |
|     return enable_record_time_of_runtime_;
 | |
|   }
 | |
| 
 | |
|  protected:
 | |
|   virtual bool InitRuntime();
 | |
|   virtual bool CreateCpuBackend();
 | |
|   virtual bool CreateGpuBackend();
 | |
|   bool initialized = false;
 | |
|   std::vector<Backend> valid_external_backends;
 | |
| 
 | |
|  private:
 | |
|   std::shared_ptr<Runtime> runtime_;
 | |
|   bool runtime_initialized_ = false;
 | |
|   // whether to record inference time
 | |
|   bool enable_record_time_of_runtime_ = false;
 | |
| 
 | |
|   // record inference time for backend
 | |
|   std::vector<double> time_of_runtime_;
 | |
| };
 | |
| 
 | |
| }  // namespace fastdeploy
 |