Files
FastDeploy/fastdeploy/model_executor/layers/embeddings.py
2025-07-17 13:37:54 +08:00

143 lines
5.2 KiB
Python

"""
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from typing import Dict
import numpy as np
import paddle
from paddle import nn
from paddle.distributed import fleet
from fastdeploy.config import FDConfig
from .utils import get_tensor
class VocabParallelEmbedding(nn.Layer):
"""
VocabParallelEmbedding Layer
"""
def __init__(
self,
fd_config: FDConfig,
num_embeddings: int,
embedding_dim: int = 768,
params_dtype: str = "bfloat16",
prefix="",
) -> None:
"""
Initialize the VocabParallelEmbedding layer for the model.
Args:
fd_config (FDConfig): Arguments related to inference, containing
attributes such as weight_dtype, act_dtype, mp_size, hidden_size, head_dim,
num_attention_heads, and ffn_hidden_size.
num_embeddings (int) : vocabulary size.
embedding_dim (int) : size of hidden state.
params_dtype (str) : data type of parameters.
prefix (str): The name of current layer. Defaults to "".
"""
super().__init__()
self.fd_config = fd_config
hcg = fleet.get_hybrid_communicate_group()
self.mp_rank: int = hcg.get_model_parallel_rank()
self.column_cut = False
self.world_size: int = hcg.get_model_parallel_world_size()
self.ring_id: int = hcg.get_model_parallel_group().id
self.use_ep: bool = fd_config.parallel_config.use_ep
self.hidden_dropout_prob: float = fd_config.model_config.hidden_dropout_prob
self.initializer_range: float = fd_config.model_config.initializer_range
self.max_position_embeddings: int = fd_config.model_config.max_position_embeddings
self.tie_word_embeddings: bool = fd_config.model_config.tie_word_embeddings
self.params_dtype: str = params_dtype
if self.use_ep:
self.embeddings = nn.Embedding(
num_embeddings,
embedding_dim,
)
else:
if not self.column_cut:
self.embeddings = fleet.meta_parallel.VocabParallelEmbedding(
num_embeddings,
embedding_dim,
mp_group=fleet.get_hybrid_communicate_group().
get_model_parallel_group(),
weight_attr=paddle.ParamAttr(
initializer=nn.initializer.Normal(
mean=0.0, std=self.initializer_range), ),
)
else:
# column cut embedding
self.embeddings = nn.Embedding(
num_embeddings,
embedding_dim // self.world_size,
)
self.embeddings.weight.is_distributed = True
self.embeddings.weight.split_axis = 1
self.prefix = prefix
self.dropout = nn.Dropout(self.hidden_dropout_prob)
def load_state_dict(self, state_dict: Dict[str,
paddle.Tensor | np.ndarray]):
"""
Load the checkpoint state dictionary into the layer.
Args:
state_dict (dict): A dictionary containing the checkpoint weights and biases.
"""
if self.tie_word_embeddings:
self.embeddings.weight.set_value(
get_tensor(state_dict[self.prefix + ".weight"]).astype(
paddle.get_default_dtype()))
else:
self.embeddings.weight.set_value(
get_tensor(state_dict.pop(self.prefix + ".weight")).astype(
paddle.get_default_dtype()))
def forward(self, ids_remove_padding=None) -> paddle.Tensor:
"""
Defines the forward computation of the layer.
Args:
ids_remove_padding (Tensor, optional): Tensor of token IDs, with padding removed.
If None, no input is provided.
Returns:
Tensor: Embedded tensor representation of the input IDs.
"""
if self.use_ep:
input_embedings = self.embeddings(ids_remove_padding)
else:
if self.column_cut:
input_embedings = self.embeddings(ids_remove_padding)
inputs_embeds_temp = []
paddle.distributed.all_gather(
inputs_embeds_temp,
input_embedings,
group=fleet.get_hybrid_communicate_group().
get_model_parallel_group(),
sync_op=True,
)
input_embedings = paddle.concat(inputs_embeds_temp, -1)
else:
input_embedings = self.embeddings(ids_remove_padding)
return input_embedings