mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
* Add notes for tensors * Optimize some apis * move some warnings * Support build with Paddle2ONNX * Add protobuf support * Fix compile on mac * add clearn package script * Add paddle2onnx code * remove submodule * Add onnx ocde * remove softlink * add onnx code * fix error * Add cmake file * fix patchelf * update paddle2onnx * Delete .gitmodules --------- Co-authored-by: PaddleCI <paddle_ci@example.com> Co-authored-by: pangyoki <pangyoki@126.com> Co-authored-by: jiangjiajun <jiangjiajun@baidu.lcom>
183 lines
6.2 KiB
C++
183 lines
6.2 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle2onnx/mapper/quantize/dequantize_linear.h"
|
|
|
|
namespace paddle2onnx {
|
|
REGISTER_MAPPER(dequantize_linear, DequantizeLinearMapper)
|
|
|
|
int32_t DequantizeLinearMapper::GetMinOpset(bool verbose) {
|
|
if (!IsConstantInput("Scale")) {
|
|
Error() << "Input `Scale` requires to be a constant tensor." << std::endl;
|
|
return -1;
|
|
}
|
|
std::vector<float> scales;
|
|
if (!TryGetInputValue("Scale", &scales)) {
|
|
Error() << "Failed to read tensor value of `Scale`." << std::endl;
|
|
return -1;
|
|
}
|
|
if (bit_length_ != 8) {
|
|
Error() << "Only support bit_length = 8." << std::endl;
|
|
return -1;
|
|
}
|
|
if (scales.size() > 1) {
|
|
auto x_info = GetInput("X");
|
|
if (x_info[0].shape[quant_axis_] != scales.size()) {
|
|
Error() << "Scale size must equal to the size of input quantize axis."
|
|
<< std::endl;
|
|
return -1;
|
|
}
|
|
Logger(verbose, 13) << "While size of scales greater than 1, "
|
|
<< RequireOpset(13) << std::endl;
|
|
return 13;
|
|
}
|
|
auto x_info = GetInput("X");
|
|
auto x_shape = x_info[0].shape;
|
|
if (x_shape.size() == 2) {
|
|
if (quant_axis_ != 1) {
|
|
Error() << "When the rank of input is 2, the attribute quant_axis "
|
|
"requires to be 1."
|
|
<< std::endl;
|
|
return -1;
|
|
}
|
|
} else if (x_shape.size() == 4) {
|
|
if (!(quant_axis_ == 1 || quant_axis_ == 0)) {
|
|
Error() << "When the rank of input is 4, the attribute quant_axis "
|
|
"requires to be 0 or 1."
|
|
<< std::endl;
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
Logger(verbose, 10) << RequireOpset(10) << std::endl;
|
|
return 10;
|
|
}
|
|
|
|
void DequantizeLinearMapper::ConvertInt8ToFp32(
|
|
const std::vector<float> &onnx_scales, std::vector<float> *weight) {
|
|
auto x_info = GetInput("X");
|
|
auto x_shape = x_info[0].shape;
|
|
if (x_shape.size() == 2) {
|
|
for (auto j = 0; j < x_shape[1]; ++j) {
|
|
float scale_value = 0;
|
|
if (onnx_scales.size() == 1) {
|
|
scale_value = onnx_scales[0];
|
|
} else {
|
|
scale_value = onnx_scales[j];
|
|
}
|
|
for (auto i = 0; i < x_shape[0]; ++i) {
|
|
auto offset = i * x_shape[1] + j;
|
|
(*weight)[offset] *= scale_value;
|
|
}
|
|
}
|
|
} else if (x_shape.size() == 4) {
|
|
if (quant_axis_ == 0) {
|
|
auto inner_offset = 1;
|
|
for (auto i : x_shape) {
|
|
inner_offset *= i;
|
|
}
|
|
inner_offset /= x_shape[0];
|
|
for (int i = 0; i < x_shape[0]; ++i) {
|
|
float scale_value = 0;
|
|
if (onnx_scales.size() == 1) {
|
|
scale_value = onnx_scales[0];
|
|
} else {
|
|
scale_value = onnx_scales[i];
|
|
}
|
|
for (auto j = 0; j < inner_offset; ++j) {
|
|
auto offset = i * inner_offset + j;
|
|
(*weight)[offset] *= scale_value;
|
|
}
|
|
}
|
|
} else {
|
|
auto inner_offset = x_shape[2] * x_shape[3];
|
|
auto outter_offset = x_shape[1] * inner_offset;
|
|
for (auto i = 0; i < x_shape[0]; ++i) {
|
|
for (auto j = 0; j < x_shape[1]; ++j) {
|
|
float scale_value = 0;
|
|
if (onnx_scales.size() == 1) {
|
|
scale_value = onnx_scales[0];
|
|
} else {
|
|
scale_value = onnx_scales[j];
|
|
}
|
|
for (auto k = 0; k < inner_offset; k++) {
|
|
auto offset = i * outter_offset + j * inner_offset + k;
|
|
(*weight)[offset] *= scale_value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void DequantizeLinearMapper::Opset10() {
|
|
auto x_info = GetInput("X");
|
|
auto x_shape = x_info[0].shape;
|
|
std::vector<float> scales;
|
|
Assert(TryGetInputValue("Scale", &scales),
|
|
"Failed to read tensor value of `Scale`.");
|
|
std::vector<float> onnx_scales;
|
|
onnx_scales.reserve(scales.size());
|
|
for (auto &i : scales) {
|
|
onnx_scales.push_back(i / 127);
|
|
}
|
|
std::vector<int64_t> onnx_zeros(onnx_scales.size(), 0);
|
|
std::string scale_node, zero_node;
|
|
if (onnx_zeros.size() == 1) {
|
|
scale_node = helper_->Constant({}, ONNX_NAMESPACE::TensorProto::FLOAT,
|
|
onnx_scales[0]);
|
|
zero_node =
|
|
helper_->Constant({}, ONNX_NAMESPACE::TensorProto::INT8, onnx_zeros[0]);
|
|
} else {
|
|
scale_node =
|
|
helper_->Constant(ONNX_NAMESPACE::TensorProto::FLOAT, onnx_scales);
|
|
zero_node =
|
|
helper_->Constant(ONNX_NAMESPACE::TensorProto::INT8, onnx_zeros);
|
|
}
|
|
|
|
std::vector<float> weight;
|
|
TryGetInputValue("X", &weight);
|
|
if (weight.empty()) {
|
|
auto node = helper_->MakeNode("DequantizeLinear",
|
|
{x_info[0].name, scale_node, zero_node},
|
|
{GetOutput("Y")[0].name});
|
|
if (helper_->GetOpsetVersion() >= 13) {
|
|
AddAttribute(node, "axis", quant_axis_);
|
|
}
|
|
QuantizeInfo quantize_info(onnx_scales, onnx_zeros, scale_node, zero_node,
|
|
quant_axis_);
|
|
helper_->quantize_info[GetOutput("Y")[0].name] = quantize_info;
|
|
return;
|
|
}
|
|
ConvertInt8ToFp32(onnx_scales, &weight);
|
|
|
|
QuantizeInfo quantize_info(onnx_scales, onnx_zeros, scale_node, zero_node,
|
|
quant_axis_);
|
|
helper_->quantize_info[x_info[0].name] = quantize_info;
|
|
Weight fp32_weight;
|
|
fp32_weight.set(P2ODataType::FP32, x_shape, weight);
|
|
helper_->updated_params[x_info[0].name] = fp32_weight;
|
|
auto node = helper_->MakeNode("QuantizeLinear",
|
|
{x_info[0].name, scale_node, zero_node});
|
|
if (helper_->GetOpsetVersion() >= 13) {
|
|
AddAttribute(node, "axis", quant_axis_);
|
|
}
|
|
auto dq_node = helper_->MakeNode("DequantizeLinear",
|
|
{node->output(0), scale_node, zero_node},
|
|
{GetOutput("Y")[0].name});
|
|
if (helper_->GetOpsetVersion() >= 13) {
|
|
AddAttribute(dq_node, "axis", quant_axis_);
|
|
}
|
|
}
|
|
} // namespace paddle2onnx
|