Files
FastDeploy/paddle2onnx/mapper/quantize/dequantize_linear.cc
Jason 6343b0db47 [Build] Support build with source code of Paddle2ONNX (#1559)
* Add notes for tensors

* Optimize some apis

* move some warnings

* Support build with Paddle2ONNX

* Add protobuf support

* Fix compile on mac

* add clearn package script

* Add paddle2onnx code

* remove submodule

* Add onnx ocde

* remove softlink

* add onnx code

* fix error

* Add cmake file

* fix patchelf

* update paddle2onnx

* Delete .gitmodules

---------

Co-authored-by: PaddleCI <paddle_ci@example.com>
Co-authored-by: pangyoki <pangyoki@126.com>
Co-authored-by: jiangjiajun <jiangjiajun@baidu.lcom>
2023-03-17 10:03:22 +08:00

183 lines
6.2 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle2onnx/mapper/quantize/dequantize_linear.h"
namespace paddle2onnx {
REGISTER_MAPPER(dequantize_linear, DequantizeLinearMapper)
int32_t DequantizeLinearMapper::GetMinOpset(bool verbose) {
if (!IsConstantInput("Scale")) {
Error() << "Input `Scale` requires to be a constant tensor." << std::endl;
return -1;
}
std::vector<float> scales;
if (!TryGetInputValue("Scale", &scales)) {
Error() << "Failed to read tensor value of `Scale`." << std::endl;
return -1;
}
if (bit_length_ != 8) {
Error() << "Only support bit_length = 8." << std::endl;
return -1;
}
if (scales.size() > 1) {
auto x_info = GetInput("X");
if (x_info[0].shape[quant_axis_] != scales.size()) {
Error() << "Scale size must equal to the size of input quantize axis."
<< std::endl;
return -1;
}
Logger(verbose, 13) << "While size of scales greater than 1, "
<< RequireOpset(13) << std::endl;
return 13;
}
auto x_info = GetInput("X");
auto x_shape = x_info[0].shape;
if (x_shape.size() == 2) {
if (quant_axis_ != 1) {
Error() << "When the rank of input is 2, the attribute quant_axis "
"requires to be 1."
<< std::endl;
return -1;
}
} else if (x_shape.size() == 4) {
if (!(quant_axis_ == 1 || quant_axis_ == 0)) {
Error() << "When the rank of input is 4, the attribute quant_axis "
"requires to be 0 or 1."
<< std::endl;
return -1;
}
}
Logger(verbose, 10) << RequireOpset(10) << std::endl;
return 10;
}
void DequantizeLinearMapper::ConvertInt8ToFp32(
const std::vector<float> &onnx_scales, std::vector<float> *weight) {
auto x_info = GetInput("X");
auto x_shape = x_info[0].shape;
if (x_shape.size() == 2) {
for (auto j = 0; j < x_shape[1]; ++j) {
float scale_value = 0;
if (onnx_scales.size() == 1) {
scale_value = onnx_scales[0];
} else {
scale_value = onnx_scales[j];
}
for (auto i = 0; i < x_shape[0]; ++i) {
auto offset = i * x_shape[1] + j;
(*weight)[offset] *= scale_value;
}
}
} else if (x_shape.size() == 4) {
if (quant_axis_ == 0) {
auto inner_offset = 1;
for (auto i : x_shape) {
inner_offset *= i;
}
inner_offset /= x_shape[0];
for (int i = 0; i < x_shape[0]; ++i) {
float scale_value = 0;
if (onnx_scales.size() == 1) {
scale_value = onnx_scales[0];
} else {
scale_value = onnx_scales[i];
}
for (auto j = 0; j < inner_offset; ++j) {
auto offset = i * inner_offset + j;
(*weight)[offset] *= scale_value;
}
}
} else {
auto inner_offset = x_shape[2] * x_shape[3];
auto outter_offset = x_shape[1] * inner_offset;
for (auto i = 0; i < x_shape[0]; ++i) {
for (auto j = 0; j < x_shape[1]; ++j) {
float scale_value = 0;
if (onnx_scales.size() == 1) {
scale_value = onnx_scales[0];
} else {
scale_value = onnx_scales[j];
}
for (auto k = 0; k < inner_offset; k++) {
auto offset = i * outter_offset + j * inner_offset + k;
(*weight)[offset] *= scale_value;
}
}
}
}
}
}
void DequantizeLinearMapper::Opset10() {
auto x_info = GetInput("X");
auto x_shape = x_info[0].shape;
std::vector<float> scales;
Assert(TryGetInputValue("Scale", &scales),
"Failed to read tensor value of `Scale`.");
std::vector<float> onnx_scales;
onnx_scales.reserve(scales.size());
for (auto &i : scales) {
onnx_scales.push_back(i / 127);
}
std::vector<int64_t> onnx_zeros(onnx_scales.size(), 0);
std::string scale_node, zero_node;
if (onnx_zeros.size() == 1) {
scale_node = helper_->Constant({}, ONNX_NAMESPACE::TensorProto::FLOAT,
onnx_scales[0]);
zero_node =
helper_->Constant({}, ONNX_NAMESPACE::TensorProto::INT8, onnx_zeros[0]);
} else {
scale_node =
helper_->Constant(ONNX_NAMESPACE::TensorProto::FLOAT, onnx_scales);
zero_node =
helper_->Constant(ONNX_NAMESPACE::TensorProto::INT8, onnx_zeros);
}
std::vector<float> weight;
TryGetInputValue("X", &weight);
if (weight.empty()) {
auto node = helper_->MakeNode("DequantizeLinear",
{x_info[0].name, scale_node, zero_node},
{GetOutput("Y")[0].name});
if (helper_->GetOpsetVersion() >= 13) {
AddAttribute(node, "axis", quant_axis_);
}
QuantizeInfo quantize_info(onnx_scales, onnx_zeros, scale_node, zero_node,
quant_axis_);
helper_->quantize_info[GetOutput("Y")[0].name] = quantize_info;
return;
}
ConvertInt8ToFp32(onnx_scales, &weight);
QuantizeInfo quantize_info(onnx_scales, onnx_zeros, scale_node, zero_node,
quant_axis_);
helper_->quantize_info[x_info[0].name] = quantize_info;
Weight fp32_weight;
fp32_weight.set(P2ODataType::FP32, x_shape, weight);
helper_->updated_params[x_info[0].name] = fp32_weight;
auto node = helper_->MakeNode("QuantizeLinear",
{x_info[0].name, scale_node, zero_node});
if (helper_->GetOpsetVersion() >= 13) {
AddAttribute(node, "axis", quant_axis_);
}
auto dq_node = helper_->MakeNode("DequantizeLinear",
{node->output(0), scale_node, zero_node},
{GetOutput("Y")[0].name});
if (helper_->GetOpsetVersion() >= 13) {
AddAttribute(dq_node, "axis", quant_axis_);
}
}
} // namespace paddle2onnx