Files
FastDeploy/fastdeploy/vision/visualize/visualize.h
yeliang2258 a509dd8ec1 [Model] Add Paddle3D smoke model (#1766)
* add smoke model

* add 3d vis

* update code

* update doc

* mv paddle3d from detection to perception

* update result for velocity

* update code for CI

* add set input data for TRT backend

* add serving support for smoke model

* update code

* update code

* update code

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-04-14 16:30:56 +08:00

234 lines
13 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/vision/common/result.h"
#include "fastdeploy/vision/tracking/pptracking/model.h"
#include "opencv2/imgproc/imgproc.hpp"
namespace fastdeploy {
/** \brief All C++ FastDeploy Vision Models APIs are defined inside this namespace
*
*/
namespace vision {
class FASTDEPLOY_DECL Visualize {
public:
static int num_classes_;
static std::vector<int> color_map_;
static const std::vector<int>& GetColorMap(int num_classes = 1000);
static cv::Mat VisDetection(const cv::Mat& im, const DetectionResult& result,
float score_threshold = 0.0, int line_size = 1,
float font_size = 0.5f);
static cv::Mat VisPerception(const cv::Mat& im,
const PerceptionResult& result,
const std::string & config_file,
float score_threshold = 0.0,
int line_size = 1,
float font_size = 0.5f);
static cv::Mat VisFaceDetection(const cv::Mat& im,
const FaceDetectionResult& result,
int line_size = 1, float font_size = 0.5f);
static cv::Mat VisSegmentation(const cv::Mat& im,
const SegmentationResult& result);
static cv::Mat VisMattingAlpha(const cv::Mat& im, const MattingResult& result,
bool remove_small_connected_area = false);
static cv::Mat RemoveSmallConnectedArea(const cv::Mat& alpha_pred,
float threshold);
static cv::Mat
SwapBackgroundMatting(const cv::Mat& im, const cv::Mat& background,
const MattingResult& result,
bool remove_small_connected_area = false);
static cv::Mat SwapBackgroundSegmentation(const cv::Mat& im,
const cv::Mat& background,
int background_label,
const SegmentationResult& result);
static cv::Mat VisOcr(const cv::Mat& srcimg, const OCRResult& ocr_result);
};
std::vector<int> GenerateColorMap(int num_classes = 1000);
cv::Mat RemoveSmallConnectedArea(const cv::Mat& alpha_pred, float threshold);
/** \brief Show the visualized results for detection models
*
* \param[in] im the input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result the result produced by model
* \param[in] score_threshold threshold for result scores, the bounding box will not be shown if the score is less than score_threshold
* \param[in] line_size line size for bounding boxes
* \param[in] font_size font size for text
* \return cv::Mat type stores the visualized results
*/
FASTDEPLOY_DECL cv::Mat VisDetection(const cv::Mat& im,
const DetectionResult& result,
float score_threshold = 0.0,
int line_size = 1, float font_size = 0.5f);
/** \brief Show the visualized results with custom labels for detection models
*
* \param[in] im the input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result the result produced by model
* \param[in] labels the visualized result will show the bounding box contain class label
* \param[in] score_threshold threshold for result scores, the bounding box will not be shown if the score is less than score_threshold
* \param[in] line_size line size for bounding boxes
* \param[in] font_size font size for text
* \return cv::Mat type stores the visualized results
*/
FASTDEPLOY_DECL cv::Mat VisDetection(const cv::Mat& im,
const DetectionResult& result,
const std::vector<std::string>& labels,
float score_threshold = 0.0,
int line_size = 1, float font_size = 0.5f);
/** \brief Show the visualized results with custom labels for detection models
*
* \param[in] im the input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result the result produced by model
* \param[in] labels the visualized result will show the bounding box contain class label
* \param[in] score_threshold threshold for result scores, the bounding box will not be shown if the score is less than score_threshold
* \param[in] line_size line size for bounding boxes
* \param[in] font_size font size for text
* \return cv::Mat type stores the visualized results
*/
FASTDEPLOY_DECL cv::Mat VisPerception(const cv::Mat& im,
const PerceptionResult& result,
const std::string & config_file,
float score_threshold = 0.0,
int line_size = 1 ,
float font_size = 0.5f);
/** \brief Show the visualized results for classification models
*
* \param[in] im the input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result the result produced by model
* \param[in] top_k the length of return values, e.g., if topk==2, the result will include the 2 most possible class label for input image.
* \param[in] score_threshold threshold for top_k scores, the class will not be shown if the score is less than score_threshold
* \param[in] font_size font size
* \return cv::Mat type stores the visualized results
*/
FASTDEPLOY_DECL cv::Mat VisClassification(const cv::Mat& im,
const ClassifyResult& result,
int top_k = 5,
float score_threshold = 0.0f,
float font_size = 0.5f);
/** \brief Show the visualized results with custom labels for classification models
*
* \param[in] im the input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result the result produced by model
* \param[in] labels custom labels for user, the visualized result will show the corresponding custom labels
* \param[in] top_k the length of return values, e.g., if topk==2, the result will include the 2 most possible class label for input image.
* \param[in] score_threshold threshold for top_k scores, the class will not be shown if the score is less than score_threshold
* \param[in] font_size font size
* \return cv::Mat type stores the visualized results
*/
FASTDEPLOY_DECL cv::Mat
VisClassification(const cv::Mat& im, const ClassifyResult& result,
const std::vector<std::string>& labels, int top_k = 5,
float score_threshold = 0.0f, float font_size = 0.5f);
/** \brief Show the visualized results for face detection models
*
* \param[in] im the input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result the result produced by model
* \param[in] line_size line size for bounding boxes
* \param[in] font_size font size for text
* \return cv::Mat type stores the visualized results
*/
FASTDEPLOY_DECL cv::Mat VisFaceDetection(const cv::Mat& im,
const FaceDetectionResult& result,
int line_size = 1,
float font_size = 0.5f);
/** \brief Show the visualized results for face alignment models
*
* \param[in] im the input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result the result produced by model
* \param[in] line_size line size for circle point
* \return cv::Mat type stores the visualized results
*/
FASTDEPLOY_DECL cv::Mat VisFaceAlignment(const cv::Mat& im,
const FaceAlignmentResult& result,
int line_size = 1);
/** \brief Show the visualized results for segmentation models
*
* \param[in] im the input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result the result produced by model
* \param[in] weight transparent weight of visualized result image
* \return cv::Mat type stores the visualized results
*/
FASTDEPLOY_DECL cv::Mat VisSegmentation(const cv::Mat& im,
const SegmentationResult& result,
float weight = 0.5);
/** \brief Show the visualized results for matting models
*
* \param[in] im the input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result the result produced by model
* \param[in] transparent_background if transparent_background==true, the background will with transparent color
* \param[in] transparent_threshold since the alpha value in MattringResult is a float between [0, 1], transparent_threshold is used to filter background pixel
* \param[in] remove_small_connected_area if remove_small_connected_area==true, the visualized result will not include the small connected areas
* \return cv::Mat type stores the visualized results
*/
FASTDEPLOY_DECL cv::Mat VisMatting(const cv::Mat& im,
const MattingResult& result,
bool transparent_background = false,
float transparent_threshold = 0.999,
bool remove_small_connected_area = false);
/** \brief Show the visualized results for Ocr models
*
* \param[in] im the input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result the result produced by model
* \return cv::Mat type stores the visualized results
*/
FASTDEPLOY_DECL cv::Mat VisOcr(const cv::Mat& im, const OCRResult& ocr_result,
const float score_threshold = 0);
FASTDEPLOY_DECL cv::Mat VisMOT(const cv::Mat& img, const MOTResult& results,
float score_threshold = 0.0f,
tracking::TrailRecorder* recorder = nullptr);
/** \brief Swap the image background with MattingResult
*
* \param[in] im the input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] background the background image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result the MattingResult produced by model
* \param[in] remove_small_connected_area if remove_small_connected_area==true, the visualized result will not include the small connected areas
* \return cv::Mat type stores the visualized results
*/
FASTDEPLOY_DECL cv::Mat
SwapBackground(const cv::Mat& im, const cv::Mat& background,
const MattingResult& result,
bool remove_small_connected_area = false);
/** \brief Swap the image background with SegmentationResult
*
* \param[in] im the input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] background the background image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result the SegmentationResult produced by model
* \param[in] background_label the background label number in SegmentationResult
* \return cv::Mat type stores the visualized results
*/
FASTDEPLOY_DECL cv::Mat SwapBackground(const cv::Mat& im,
const cv::Mat& background,
const SegmentationResult& result,
int background_label);
/** \brief Show the visualized results for key point detection models
*
* \param[in] im the input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] results the result produced by model
* \param[in] conf_threshold threshold for result scores, the result will not be shown if the score is less than conf_threshold
* \return cv::Mat type stores the visualized results
*/
FASTDEPLOY_DECL cv::Mat
VisKeypointDetection(const cv::Mat& im, const KeyPointDetectionResult& results,
float conf_threshold = 0.5f);
FASTDEPLOY_DECL cv::Mat VisHeadPose(const cv::Mat& im,
const HeadPoseResult& result, int size = 50,
int line_size = 1);
} // namespace vision
} // namespace fastdeploy