Files
FastDeploy/fastdeploy/vision/detection/ppdet/postprocessor.h
thunder95 51be3fea78 [Hackthon_4th 177] Support PP-YOLOE-R with BM1684 (#1809)
* first draft

* add robx iou

* add benchmark for ppyoloe_r

* remove trash code

* fix bugs

* add pybind nms rotated option

* add missing head file

* fix bug

* fix bug2

* fix shape bug

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-04-21 10:48:05 +08:00

117 lines
4.2 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
#include "fastdeploy/vision/detection/ppdet/multiclass_nms.h"
#include "fastdeploy/vision/detection/ppdet/multiclass_nms_rotated.h"
namespace fastdeploy {
namespace vision {
namespace detection {
/*! @brief Postprocessor object for PaddleDet serials model.
*/
class FASTDEPLOY_DECL PaddleDetPostprocessor {
public:
PaddleDetPostprocessor() {
// There may be no NMS config in the yaml file,
// so we need to give a initial value to multi_class_nms_.
multi_class_nms_.SetNMSOption(NMSOption());
multi_class_nms_rotated_.SetNMSRotatedOption(NMSRotatedOption());
}
/** \brief Create a preprocessor instance for PaddleDet serials model
*
* \param[in] config_file Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
*/
explicit PaddleDetPostprocessor(const std::string& arch) {
// Used to differentiate models
arch_ = arch;
// There may be no NMS config in the yaml file,
// so we need to give a initial value to multi_class_nms_.
multi_class_nms_.SetNMSOption(NMSOption());
multi_class_nms_rotated_.SetNMSRotatedOption(NMSRotatedOption());
}
/** \brief Process the result of runtime and fill to ClassifyResult structure
*
* \param[in] tensors The inference result from runtime
* \param[in] result The output result of detection
* \return true if the postprocess successed, otherwise false
*/
bool Run(const std::vector<FDTensor>& tensors,
std::vector<DetectionResult>* result);
/// Apply box decoding and nms step for the outputs for the model.This is
/// only available for those model exported without box decoding and nms.
void ApplyNMS() { with_nms_ = false; }
/// If you do not want to modify the Yaml configuration file,
/// you can use this function to set rotated NMS parameters.
void SetNMSRotatedOption(const NMSRotatedOption& option) {
multi_class_nms_rotated_.SetNMSRotatedOption(option);
}
/// If you do not want to modify the Yaml configuration file,
/// you can use this function to set NMS parameters.
void SetNMSOption(const NMSOption& option) {
multi_class_nms_.SetNMSOption(option);
}
// Set scale_factor_ value.This is only available for those model exported
// without nms.
void SetScaleFactor(const std::vector<float>& scale_factor_value) {
scale_factor_ = scale_factor_value;
}
private:
std::vector<float> scale_factor_{0.0, 0.0};
std::vector<float> GetScaleFactor() { return scale_factor_; }
// for model without nms.
bool with_nms_ = true;
// Used to differentiate models
std::string arch_;
PaddleMultiClassNMS multi_class_nms_{};
PaddleMultiClassNMSRotated multi_class_nms_rotated_{};
// Process for General tensor without nms.
bool ProcessWithoutNMS(const std::vector<FDTensor>& tensors,
std::vector<DetectionResult>* results);
// Process for General tensor with nms.
bool ProcessWithNMS(const std::vector<FDTensor>& tensors,
std::vector<DetectionResult>* results);
// Process SOLOv2
bool ProcessSolov2(const std::vector<FDTensor>& tensors,
std::vector<DetectionResult>* results);
// Process PPYOLOER
bool ProcessPPYOLOER(const std::vector<FDTensor>& tensors,
std::vector<DetectionResult>* results);
// Process mask tensor for MaskRCNN
bool ProcessMask(const FDTensor& tensor,
std::vector<DetectionResult>* results);
};
} // namespace detection
} // namespace vision
} // namespace fastdeploy