Files
FastDeploy/fastdeploy/vision/detection/ppdet/postprocessor.cc
thunder95 51be3fea78 [Hackthon_4th 177] Support PP-YOLOE-R with BM1684 (#1809)
* first draft

* add robx iou

* add benchmark for ppyoloe_r

* remove trash code

* fix bugs

* add pybind nms rotated option

* add missing head file

* fix bug

* fix bug2

* fix shape bug

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-04-21 10:48:05 +08:00

362 lines
12 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/detection/ppdet/postprocessor.h"
#include "fastdeploy/vision/utils/utils.h"
#include "yaml-cpp/yaml.h"
namespace fastdeploy {
namespace vision {
namespace detection {
bool PaddleDetPostprocessor::ProcessMask(
const FDTensor& tensor, std::vector<DetectionResult>* results) {
auto shape = tensor.Shape();
int64_t out_mask_w = shape[2];
int64_t out_mask_numel = shape[1] * shape[2];
const auto* data = reinterpret_cast<const uint8_t*>(tensor.CpuData());
int index = 0;
for (int i = 0; i < results->size(); ++i) {
(*results)[i].contain_masks = true;
(*results)[i].masks.resize((*results)[i].boxes.size());
for (int j = 0; j < (*results)[i].boxes.size(); ++j) {
int x1 = static_cast<int>(round((*results)[i].boxes[j][0]));
int y1 = static_cast<int>(round((*results)[i].boxes[j][1]));
int x2 = static_cast<int>(round((*results)[i].boxes[j][2]));
int y2 = static_cast<int>(round((*results)[i].boxes[j][3]));
int keep_mask_h = y2 - y1;
int keep_mask_w = x2 - x1;
int keep_mask_numel = keep_mask_h * keep_mask_w;
(*results)[i].masks[j].Resize(keep_mask_numel);
(*results)[i].masks[j].shape = {keep_mask_h, keep_mask_w};
const uint8_t* current_ptr = data + index * out_mask_numel;
auto* keep_mask_ptr =
reinterpret_cast<uint8_t*>((*results)[i].masks[j].Data());
for (int row = y1; row < y2; ++row) {
size_t keep_nbytes_in_col = keep_mask_w * sizeof(uint8_t);
const uint8_t* out_row_start_ptr = current_ptr + row * out_mask_w + x1;
uint8_t* keep_row_start_ptr = keep_mask_ptr + (row - y1) * keep_mask_w;
std::memcpy(keep_row_start_ptr, out_row_start_ptr, keep_nbytes_in_col);
}
index += 1;
}
}
return true;
}
bool PaddleDetPostprocessor::ProcessWithNMS(
const std::vector<FDTensor>& tensors,
std::vector<DetectionResult>* results) {
// Get number of boxes for each input image
std::vector<int> num_boxes(tensors[1].shape[0]);
int total_num_boxes = 0;
if (tensors[1].dtype == FDDataType::INT32) {
const auto* data = static_cast<const int32_t*>(tensors[1].CpuData());
for (size_t i = 0; i < tensors[1].shape[0]; ++i) {
num_boxes[i] = static_cast<int>(data[i]);
total_num_boxes += num_boxes[i];
}
} else if (tensors[1].dtype == FDDataType::INT64) {
const auto* data = static_cast<const int64_t*>(tensors[1].CpuData());
for (size_t i = 0; i < tensors[1].shape[0]; ++i) {
num_boxes[i] = static_cast<int>(data[i]);
total_num_boxes += num_boxes[i];
}
}
// Special case for TensorRT, it has fixed output shape of NMS
// So there's invalid boxes in its' output boxes
int num_output_boxes = static_cast<int>(tensors[0].Shape()[0]);
bool contain_invalid_boxes = false;
if (total_num_boxes != num_output_boxes) {
if (num_output_boxes % num_boxes.size() == 0) {
contain_invalid_boxes = true;
} else {
FDERROR << "Cannot handle the output data for this model, unexpected "
"situation."
<< std::endl;
return false;
}
}
// Get boxes for each input image
results->resize(num_boxes.size());
if (tensors[0].shape[0] == 0) {
// No detected boxes
return true;
}
const auto* box_data = static_cast<const float*>(tensors[0].CpuData());
int offset = 0;
for (size_t i = 0; i < num_boxes.size(); ++i) {
const float* ptr = box_data + offset;
(*results)[i].Reserve(num_boxes[i]);
for (size_t j = 0; j < num_boxes[i]; ++j) {
(*results)[i].label_ids.push_back(
static_cast<int32_t>(round(ptr[j * 6])));
(*results)[i].scores.push_back(ptr[j * 6 + 1]);
(*results)[i].boxes.emplace_back(std::array<float, 4>(
{ptr[j * 6 + 2], ptr[j * 6 + 3], ptr[j * 6 + 4], ptr[j * 6 + 5]}));
}
if (contain_invalid_boxes) {
offset += static_cast<int>(num_output_boxes * 6 / num_boxes.size());
} else {
offset += static_cast<int>(num_boxes[i] * 6);
}
}
return true;
}
bool PaddleDetPostprocessor::ProcessWithoutNMS(
const std::vector<FDTensor>& tensors,
std::vector<DetectionResult>* results) {
int boxes_index = 0;
int scores_index = 1;
// Judge the index of the input Tensor
if (tensors[0].shape[1] == tensors[1].shape[2]) {
boxes_index = 0;
scores_index = 1;
} else if (tensors[0].shape[2] == tensors[1].shape[1]) {
boxes_index = 1;
scores_index = 0;
} else {
FDERROR << "The shape of boxes and scores should be [batch, boxes_num, "
"4], [batch, classes_num, boxes_num]"
<< std::endl;
return false;
}
// do multi class nms
multi_class_nms_.Compute(
static_cast<const float*>(tensors[boxes_index].Data()),
static_cast<const float*>(tensors[scores_index].Data()),
tensors[boxes_index].shape, tensors[scores_index].shape);
auto num_boxes = multi_class_nms_.out_num_rois_data;
auto box_data =
static_cast<const float*>(multi_class_nms_.out_box_data.data());
// Get boxes for each input image
results->resize(num_boxes.size());
int offset = 0;
for (size_t i = 0; i < num_boxes.size(); ++i) {
const float* ptr = box_data + offset;
(*results)[i].Reserve(num_boxes[i]);
for (size_t j = 0; j < num_boxes[i]; ++j) {
(*results)[i].label_ids.push_back(
static_cast<int32_t>(round(ptr[j * 6])));
(*results)[i].scores.push_back(ptr[j * 6 + 1]);
(*results)[i].boxes.emplace_back(std::array<float, 4>(
{ptr[j * 6 + 2], ptr[j * 6 + 3], ptr[j * 6 + 4], ptr[j * 6 + 5]}));
}
offset += (num_boxes[i] * 6);
}
// do scale
if (GetScaleFactor()[0] != 0) {
for (auto& result : *results) {
for (auto& box : result.boxes) {
box[0] /= GetScaleFactor()[1];
box[1] /= GetScaleFactor()[0];
box[2] /= GetScaleFactor()[1];
box[3] /= GetScaleFactor()[0];
}
}
}
return true;
}
bool PaddleDetPostprocessor::ProcessSolov2(
const std::vector<FDTensor>& tensors,
std::vector<DetectionResult>* results) {
if (tensors.size() != 4) {
FDERROR << "The size of tensors for solov2 must be 4." << std::endl;
return false;
}
if (tensors[0].shape[0] != 1) {
FDERROR << "SOLOv2 temporarily only supports batch size is 1." << std::endl;
return false;
}
results->clear();
results->resize(1);
(*results)[0].contain_masks = true;
// tensor[0] means bbox data
const auto bbox_data = static_cast<const int*>(tensors[0].CpuData());
// tensor[1] means label data
const auto label_data_ = static_cast<const int64_t*>(tensors[1].CpuData());
// tensor[2] means score data
const auto score_data_ = static_cast<const float*>(tensors[2].CpuData());
// tensor[3] is mask data and its shape is the same as that of the image.
const auto mask_data_ = static_cast<const uint8_t*>(tensors[3].CpuData());
int rows = static_cast<int>(tensors[3].shape[1]);
int cols = static_cast<int>(tensors[3].shape[2]);
for (int bbox_id = 0; bbox_id < bbox_data[0]; ++bbox_id) {
if (score_data_[bbox_id] >= multi_class_nms_.score_threshold) {
DetectionResult& result_item = (*results)[0];
result_item.label_ids.emplace_back(label_data_[bbox_id]);
result_item.scores.emplace_back(score_data_[bbox_id]);
std::vector<int> global_mask;
for (int k = 0; k < rows * cols; ++k) {
global_mask.push_back(
static_cast<int>(mask_data_[k + bbox_id * rows * cols]));
}
// find minimize bounding box from mask
cv::Mat mask(rows, cols, CV_32SC1);
std::memcpy(mask.data, global_mask.data(),
global_mask.size() * sizeof(int));
cv::Mat mask_fp;
mask.convertTo(mask_fp, CV_32FC1);
cv::Mat rowSum;
cv::Mat colSum;
std::vector<float> sum_of_row(rows);
std::vector<float> sum_of_col(cols);
cv::reduce(mask_fp, colSum, 0, cv::REDUCE_SUM, CV_32FC1);
cv::reduce(mask_fp, rowSum, 1, cv::REDUCE_SUM, CV_32FC1);
for (int row_id = 0; row_id < rows; ++row_id) {
sum_of_row[row_id] = rowSum.at<float>(row_id, 0);
}
for (int col_id = 0; col_id < cols; ++col_id) {
sum_of_col[col_id] = colSum.at<float>(0, col_id);
}
auto it = std::find_if(sum_of_row.begin(), sum_of_row.end(),
[](int x) { return x > 0.5; });
float y1 = std::distance(sum_of_row.begin(), it);
auto it2 = std::find_if(sum_of_col.begin(), sum_of_col.end(),
[](int x) { return x > 0.5; });
float x1 = std::distance(sum_of_col.begin(), it2);
auto rit = std::find_if(sum_of_row.rbegin(), sum_of_row.rend(),
[](int x) { return x > 0.5; });
float y2 = std::distance(rit, sum_of_row.rend());
auto rit2 = std::find_if(sum_of_col.rbegin(), sum_of_col.rend(),
[](int x) { return x > 0.5; });
float x2 = std::distance(rit2, sum_of_col.rend());
result_item.boxes.emplace_back(std::array<float, 4>({x1, y1, x2, y2}));
}
}
return true;
}
bool PaddleDetPostprocessor::ProcessPPYOLOER(
const std::vector<FDTensor>& tensors,
std::vector<DetectionResult>* results) {
if (tensors.size() != 2) {
FDERROR << "The size of tensors for PPYOLOER must be 2." << std::endl;
return false;
}
int boxes_index = 0;
int scores_index = 1;
multi_class_nms_rotated_.Compute(
static_cast<const float*>(tensors[boxes_index].Data()),
static_cast<const float*>(tensors[scores_index].Data()),
tensors[boxes_index].shape, tensors[scores_index].shape);
auto num_boxes = multi_class_nms_rotated_.out_num_rois_data;
auto box_data =
static_cast<const float*>(multi_class_nms_rotated_.out_box_data.data());
// Get boxes for each input image
results->resize(num_boxes.size());
int offset = 0;
for (size_t i = 0; i < num_boxes.size(); ++i) {
const float* ptr = box_data + offset;
(*results)[i].Reserve(num_boxes[i]);
for (size_t j = 0; j < num_boxes[i]; ++j) {
(*results)[i].label_ids.push_back(
static_cast<int32_t>(round(ptr[j * 10])));
(*results)[i].scores.push_back(ptr[j * 10 + 1]);
(*results)[i].rotated_boxes.push_back(std::array<float, 8>(
{ptr[j * 10 + 2], ptr[j * 10 + 3], ptr[j * 10 + 4], ptr[j * 10 + 5],
ptr[j * 10 + 6], ptr[j * 10 + 7], ptr[j * 10 + 8],
ptr[j * 10 + 9]}));
}
offset += (num_boxes[i] * 10);
}
// do scale
if (GetScaleFactor()[0] != 0) {
for (auto& result : *results) {
for (int i = 0; i < result.rotated_boxes.size(); i++) {
for (int j = 0; j < 8; j++) {
auto scale = i % 2 == 0 ? GetScaleFactor()[1] : GetScaleFactor()[0];
result.rotated_boxes[i][j] /= float(scale);
}
}
}
}
return true;
}
bool PaddleDetPostprocessor::Run(const std::vector<FDTensor>& tensors,
std::vector<DetectionResult>* results) {
if (arch_ == "SOLOv2") {
// process for SOLOv2
ProcessSolov2(tensors, results);
// The fourth output of solov2 is mask
return ProcessMask(tensors[3], results);
} else {
if (tensors[0].Shape().size() == 3 && tensors[0].Shape()[2] == 8) { // PPYOLOER
return ProcessPPYOLOER(tensors, results);
}
// Do process according to whether NMS exists.
if (with_nms_) {
if (!ProcessWithNMS(tensors, results)) {
return false;
}
} else {
if (!ProcessWithoutNMS(tensors, results)) {
return false;
}
}
// for only detection
if (tensors.size() <= 2) {
return true;
}
// for maskrcnn
if (tensors[2].Shape()[0] != tensors[0].Shape()[0]) {
FDERROR << "The first dimension of output mask tensor:"
<< tensors[2].Shape()[0]
<< " is not equal to the first dimension of output boxes tensor:"
<< tensors[0].Shape()[0] << "." << std::endl;
return false;
}
// The third output of mask-rcnn is mask
return ProcessMask(tensors[2], results);
}
}
} // namespace detection
} // namespace vision
} // namespace fastdeploy