Files
FastDeploy/fastdeploy/vision/detection/ppdet/multiclass_nms_rotated.cc
thunder95 51be3fea78 [Hackthon_4th 177] Support PP-YOLOE-R with BM1684 (#1809)
* first draft

* add robx iou

* add benchmark for ppyoloe_r

* remove trash code

* fix bugs

* add pybind nms rotated option

* add missing head file

* fix bug

* fix bug2

* fix shape bug

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-04-21 10:48:05 +08:00

478 lines
15 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/detection/ppdet/multiclass_nms_rotated.h"
#include <algorithm>
#include <cmath>
#include <opencv2/opencv.hpp>
#include <vector>
#include "fastdeploy/core/fd_tensor.h"
#include "fastdeploy/utils/utils.h"
#include "fastdeploy/vision/detection/ppdet/multiclass_nms.h"
namespace fastdeploy {
namespace vision {
namespace detection {
template <typename T>
struct RotatedBox {
T x_ctr, y_ctr, w, h, a;
};
template <typename T>
struct Point {
T x, y;
Point(const T& px = 0, const T& py = 0) : x(px), y(py) {}
Point operator+(const Point& p) const { return Point(x + p.x, y + p.y); }
Point& operator+=(const Point& p) {
x += p.x;
y += p.y;
return *this;
}
Point operator-(const Point& p) const { return Point(x - p.x, y - p.y); }
Point operator*(const T coeff) const { return Point(x * coeff, y * coeff); }
};
template <typename T>
T Dot2D(const Point<T>& A, const Point<T>& B) {
return A.x * B.x + A.y * B.y;
}
template <typename T>
T Cross2D(const Point<T>& A, const Point<T>& B) {
return A.x * B.y - B.x * A.y;
}
template <typename T>
int GetIntersectionPoints(const Point<T> (&pts1)[4],
const Point<T> (&pts2)[4],
Point<T> (&intersections)[24]) {
// Line vector
// A line from p1 to p2 is: p1 + (p2-p1)*t, t=[0,1]
Point<T> vec1[4], vec2[4];
for (int i = 0; i < 4; i++) {
vec1[i] = pts1[(i + 1) % 4] - pts1[i];
vec2[i] = pts2[(i + 1) % 4] - pts2[i];
}
// Line test - test all line combos for intersection
int num = 0; // number of intersections
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
// Solve for 2x2 Ax=b
T det = Cross2D<T>(vec2[j], vec1[i]);
// This takes care of parallel lines
if (fabs(det) <= 1e-14) {
continue;
}
auto vec12 = pts2[j] - pts1[i];
T t1 = Cross2D<T>(vec2[j], vec12) / det;
T t2 = Cross2D<T>(vec1[i], vec12) / det;
if (t1 >= 0.0f && t1 <= 1.0f && t2 >= 0.0f && t2 <= 1.0f) {
intersections[num++] = pts1[i] + vec1[i] * t1;
}
}
}
// Check for vertices of rect1 inside rect2
{
const auto& AB = vec2[0];
const auto& DA = vec2[3];
auto ABdotAB = Dot2D<T>(AB, AB);
auto ADdotAD = Dot2D<T>(DA, DA);
for (int i = 0; i < 4; i++) {
// assume ABCD is the rectangle, and P is the point to be judged
// P is inside ABCD iff. P's projection on AB lies within AB
// and P's projection on AD lies within AD
auto AP = pts1[i] - pts2[0];
auto APdotAB = Dot2D<T>(AP, AB);
auto APdotAD = -Dot2D<T>(AP, DA);
if ((APdotAB >= 0) && (APdotAD >= 0) && (APdotAB <= ABdotAB) &&
(APdotAD <= ADdotAD)) {
intersections[num++] = pts1[i];
}
}
}
// Reverse the check - check for vertices of rect2 inside rect1
{
const auto& AB = vec1[0];
const auto& DA = vec1[3];
auto ABdotAB = Dot2D<T>(AB, AB);
auto ADdotAD = Dot2D<T>(DA, DA);
for (int i = 0; i < 4; i++) {
auto AP = pts2[i] - pts1[0];
auto APdotAB = Dot2D<T>(AP, AB);
auto APdotAD = -Dot2D<T>(AP, DA);
if ((APdotAB >= 0) && (APdotAD >= 0) && (APdotAB <= ABdotAB) &&
(APdotAD <= ADdotAD)) {
intersections[num++] = pts2[i];
}
}
}
return num;
}
template <typename T>
int ConvexHullGraham(const Point<T> (&p)[24], const int& num_in,
Point<T> (&q)[24], bool shift_to_zero = false) {
assert(num_in >= 2);
// Step 1:
// Find point with minimum y
// if more than 1 points have the same minimum y,
// pick the one with the minimum x.
int t = 0;
for (int i = 1; i < num_in; i++) {
if (p[i].y < p[t].y || (p[i].y == p[t].y && p[i].x < p[t].x)) {
t = i;
}
}
auto& start = p[t]; // starting point
// Step 2:
// Subtract starting point from every points (for sorting in the next step)
for (int i = 0; i < num_in; i++) {
q[i] = p[i] - start;
}
// Swap the starting point to position 0
auto tmp = q[0];
q[0] = q[t];
q[t] = tmp;
// Step 3:
// Sort point 1 ~ num_in according to their relative cross-product values
// (essentially sorting according to angles)
// If the angles are the same, sort according to their distance to origin
T dist[24];
for (int i = 0; i < num_in; i++) {
dist[i] = Dot2D<T>(q[i], q[i]);
}
// CPU version
std::sort(q + 1, q + num_in,
[](const Point<T>& A, const Point<T>& B) -> bool {
T temp = Cross2D<T>(A, B);
if (fabs(temp) < 1e-6) {
return Dot2D<T>(A, A) < Dot2D<T>(B, B);
} else {
return temp > 0;
}
});
// Step 4:
// Make sure there are at least 2 points (that don't overlap with each other)
// in the stack
int k; // index of the non-overlapped second point
for (k = 1; k < num_in; k++) {
if (dist[k] > 1e-8) {
break;
}
}
if (k == num_in) {
// We reach the end, which means the convex hull is just one point
q[0] = p[t];
return 1;
}
q[1] = q[k];
int m = 2; // 2 points in the stack
// Step 5:
// Finally we can start the scanning process.
// When a non-convex relationship between the 3 points is found
// (either concave shape or duplicated points),
// we pop the previous point from the stack
// until the 3-point relationship is convex again, or
// until the stack only contains two points
for (int i = k + 1; i < num_in; i++) {
while (m > 1 && Cross2D<T>(q[i] - q[m - 2], q[m - 1] - q[m - 2]) >= 0) {
m--;
}
q[m++] = q[i];
}
// Step 6 (Optional):
// In general sense we need the original coordinates, so we
// need to shift the points back (reverting Step 2)
// But if we're only interested in getting the area/perimeter of the shape
// We can simply return.
if (!shift_to_zero) {
for (int i = 0; i < m; i++) {
q[i] += start;
}
}
return m;
}
template <typename T>
T PolygonArea(const Point<T> (&q)[24], const int& m) {
if (m <= 2) {
return 0;
}
T area = 0;
for (int i = 1; i < m - 1; i++) {
area += fabs(Cross2D<T>(q[i] - q[0], q[i + 1] - q[0]));
}
return area / 2.0;
}
template <typename T>
T RboxesIntersection(T const* const poly1_raw, T const* const poly2_raw) {
// There are up to 4 x 4 + 4 + 4 = 24 intersections (including dups) returned
// from rotated_rect_intersection_pts
Point<T> intersectPts[24], orderedPts[24];
Point<T> pts1[4];
Point<T> pts2[4];
for (int i = 0; i < 4; i++) {
pts1[i] = Point<T>(poly1_raw[2 * i], poly1_raw[2 * i + 1]);
pts2[i] = Point<T>(poly2_raw[2 * i], poly2_raw[2 * i + 1]);
}
int num = GetIntersectionPoints<T>(pts1, pts2, intersectPts);
if (num <= 2) {
return 0.0;
}
// Convex Hull to order the intersection points in clockwise order and find
// the contour area.
int num_convex = ConvexHullGraham<T>(intersectPts, num, orderedPts, true);
return PolygonArea<T>(orderedPts, num_convex);
}
template <typename T>
T PolyArea(T const* const poly_raw) {
T area = 0.0;
int j = 3;
for (int i = 0; i < 4; i++) {
// area += (x[j] + x[i]) * (y[j] - y[i]);
area += (poly_raw[2 * j] + poly_raw[2 * i]) *
(poly_raw[2 * j + 1] - poly_raw[2 * i + 1]);
j = i;
}
// return static_cast<T>(abs(static_cast<float>(area) / 2.0));
return std::abs(area / 2.0);
}
template <typename T>
void Poly2Rbox(T const* const poly_raw, RotatedBox<T>& box) {
std::vector<cv::Point2f> contour_poly{
cv::Point2f(poly_raw[0], poly_raw[1]),
cv::Point2f(poly_raw[2], poly_raw[3]),
cv::Point2f(poly_raw[4], poly_raw[5]),
cv::Point2f(poly_raw[6], poly_raw[7]),
};
cv::RotatedRect rotate_rect = cv::minAreaRect(contour_poly);
box.x_ctr = rotate_rect.center.x;
box.y_ctr = rotate_rect.center.y;
box.w = rotate_rect.size.width;
box.h = rotate_rect.size.height;
box.a = rotate_rect.angle;
}
template <typename T>
T RboxIouSingle(T const* const poly1_raw, T const* const poly2_raw) {
const T area1 = PolyArea(poly1_raw);
const T area2 = PolyArea(poly2_raw);
const T intersection = RboxesIntersection<T>(poly1_raw, poly2_raw);
const T iou = intersection / (area1 + area2 - intersection);
return iou;
}
template <typename T>
bool SortScorePairDescendRotated(const std::pair<float, T>& pair1,
const std::pair<float, T>& pair2) {
return pair1.first > pair2.first;
}
void GetMaxScoreIndexRotated(
const float* scores, const int& score_size, const float& threshold,
const int& top_k, std::vector<std::pair<float, int>>* sorted_indices) {
for (size_t i = 0; i < score_size; ++i) {
if (scores[i] > threshold) {
sorted_indices->push_back(std::make_pair(scores[i], i));
}
}
// Sort the score pair according to the scores in descending order
std::stable_sort(sorted_indices->begin(), sorted_indices->end(),
SortScorePairDescendRotated<int>);
// Keep top_k scores if needed.
if (top_k > -1 && top_k < static_cast<int>(sorted_indices->size())) {
sorted_indices->resize(top_k);
}
}
void PaddleMultiClassNMSRotated::FastNMSRotated(
const float* boxes, const float* scores, const int& num_boxes,
std::vector<int>* keep_indices) {
std::vector<std::pair<float, int>> sorted_indices;
GetMaxScoreIndexRotated(scores, num_boxes, score_threshold, nms_top_k,
&sorted_indices);
// printf("nms thrd: %f, sort dim: %d\n", nms_threshold,
// int(sorted_indices.size()));
float adaptive_threshold = nms_threshold;
while (sorted_indices.size() != 0) {
const int idx = sorted_indices.front().second;
bool keep = true;
for (size_t k = 0; k < keep_indices->size(); ++k) {
if (!keep) {
break;
}
const int kept_idx = (*keep_indices)[k];
float overlap =
RboxIouSingle<float>(boxes + idx * 8, boxes + kept_idx * 8);
keep = overlap <= adaptive_threshold;
}
if (keep) {
keep_indices->push_back(idx);
}
sorted_indices.erase(sorted_indices.begin());
if (keep && nms_eta<1.0 & adaptive_threshold> 0.5) {
adaptive_threshold *= nms_eta;
}
}
}
int PaddleMultiClassNMSRotated::NMSRotatedForEachSample(
const float* boxes, const float* scores, int num_boxes, int num_classes,
std::map<int, std::vector<int>>* keep_indices) {
for (int i = 0; i < num_classes; ++i) {
if (i == background_label) {
continue;
}
const float* score_for_class_i = scores + i * num_boxes;
FastNMSRotated(boxes, score_for_class_i, num_boxes, &((*keep_indices)[i]));
}
int num_det = 0;
for (auto iter = keep_indices->begin(); iter != keep_indices->end(); ++iter) {
num_det += iter->second.size();
}
if (keep_top_k > -1 && num_det > keep_top_k) {
std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
for (const auto& it : *keep_indices) {
int label = it.first;
const float* current_score = scores + label * num_boxes;
auto& label_indices = it.second;
for (size_t j = 0; j < label_indices.size(); ++j) {
int idx = label_indices[j];
score_index_pairs.push_back(
std::make_pair(current_score[idx], std::make_pair(label, idx)));
}
}
std::stable_sort(score_index_pairs.begin(), score_index_pairs.end(),
SortScorePairDescendRotated<std::pair<int, int>>);
score_index_pairs.resize(keep_top_k);
std::map<int, std::vector<int>> new_indices;
for (size_t j = 0; j < score_index_pairs.size(); ++j) {
int label = score_index_pairs[j].second.first;
int idx = score_index_pairs[j].second.second;
new_indices[label].push_back(idx);
}
new_indices.swap(*keep_indices);
num_det = keep_top_k;
}
return num_det;
}
void PaddleMultiClassNMSRotated::Compute(
const float* boxes_data, const float* scores_data,
const std::vector<int64_t>& boxes_dim,
const std::vector<int64_t>& scores_dim) {
int score_size = scores_dim.size();
int64_t batch_size = scores_dim[0];
int64_t box_dim = boxes_dim[2];
int64_t out_dim = box_dim + 2;
int num_nmsed_out = 0;
FDASSERT(score_size == 3,
"Require rank of input scores be 3, but now it's %d.", score_size);
FDASSERT(boxes_dim[2] == 8,
"Require the 3-dimension of input boxes be 8, but now it's %lld.",
box_dim);
out_num_rois_data.resize(batch_size);
std::vector<std::map<int, std::vector<int>>> all_indices;
for (size_t i = 0; i < batch_size; ++i) {
std::map<int, std::vector<int>> indices; // indices kept for each class
const float* current_boxes_ptr =
boxes_data + i * boxes_dim[1] * boxes_dim[2];
const float* current_scores_ptr =
scores_data + i * scores_dim[1] * scores_dim[2];
int num = NMSRotatedForEachSample(current_boxes_ptr, current_scores_ptr,
boxes_dim[1], scores_dim[1], &indices);
num_nmsed_out += num;
out_num_rois_data[i] = num;
all_indices.emplace_back(indices);
}
std::vector<int64_t> out_box_dims = {num_nmsed_out, 10};
std::vector<int64_t> out_index_dims = {num_nmsed_out, 1};
if (num_nmsed_out == 0) {
for (size_t i = 0; i < batch_size; ++i) {
out_num_rois_data[i] = 0;
}
return;
}
out_box_data.resize(num_nmsed_out * 10);
out_index_data.resize(num_nmsed_out);
int count = 0;
for (size_t i = 0; i < batch_size; ++i) {
const float* current_boxes_ptr =
boxes_data + i * boxes_dim[1] * boxes_dim[2];
const float* current_scores_ptr =
scores_data + i * scores_dim[1] * scores_dim[2];
for (const auto& it : all_indices[i]) {
int label = it.first;
const auto& indices = it.second;
const float* current_scores_class_ptr =
current_scores_ptr + label * scores_dim[2];
for (size_t j = 0; j < indices.size(); ++j) {
int start = count * 10;
out_box_data[start] = label;
out_box_data[start + 1] = current_scores_class_ptr[indices[j]];
for (int k = 0; k < 8; k++) {
out_box_data[start + 2 + k] = current_boxes_ptr[indices[j] * 8 + k];
}
out_index_data[count] = i * boxes_dim[1] + indices[j];
count += 1;
}
}
}
}
} // namespace detection
} // namespace vision
} // namespace fastdeploy