Files
FastDeploy/fastdeploy/vision/detection/ppdet/multiclass_nms.h
thunder95 51be3fea78 [Hackthon_4th 177] Support PP-YOLOE-R with BM1684 (#1809)
* first draft

* add robx iou

* add benchmark for ppyoloe_r

* remove trash code

* fix bugs

* add pybind nms rotated option

* add missing head file

* fix bug

* fix bug2

* fix shape bug

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-04-21 10:48:05 +08:00

77 lines
2.7 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <map>
#include <string>
#include <vector>
namespace fastdeploy {
namespace vision {
namespace detection {
/** \brief Config for PaddleMultiClassNMS
* \param[in] background_label the value of background label
* \param[in] keep_top_k the value of keep_top_k
* \param[in] nms_eta the value of nms_eta
* \param[in] nms_threshold a dict that contains the arguments of nms operations
* \param[in] nms_top_k if there are more than max_num bboxes after NMS, only top max_num will be kept.
* \param[in] normalized Determine whether normalized is required
* \param[in] score_threshold bbox threshold, bboxes with scores lower than it will not be considered.
*/
struct NMSOption{
NMSOption() = default;
int64_t background_label = -1;
int64_t keep_top_k = 100;
float nms_eta = 1.0;
float nms_threshold = 0.5;
int64_t nms_top_k = 1000;
bool normalized = true;
float score_threshold = 0.3;
};
struct PaddleMultiClassNMS {
int64_t background_label = -1;
int64_t keep_top_k = -1;
float nms_eta;
float nms_threshold = 0.7;
int64_t nms_top_k;
bool normalized;
float score_threshold;
std::vector<int32_t> out_num_rois_data;
std::vector<int32_t> out_index_data;
std::vector<float> out_box_data;
void FastNMS(const float* boxes, const float* scores, const int& num_boxes,
std::vector<int>* keep_indices);
int NMSForEachSample(const float* boxes, const float* scores, int num_boxes,
int num_classes,
std::map<int, std::vector<int>>* keep_indices);
void Compute(const float* boxes, const float* scores,
const std::vector<int64_t>& boxes_dim,
const std::vector<int64_t>& scores_dim);
void SetNMSOption(const struct NMSOption &nms_option) {
background_label = nms_option.background_label;
keep_top_k = nms_option.keep_top_k;
nms_eta = nms_option.nms_eta;
nms_threshold = nms_option.nms_threshold;
nms_top_k = nms_option.nms_top_k;
normalized = nms_option.normalized;
score_threshold = nms_option.score_threshold;
}
};
} // namespace detection
} // namespace vision
} // namespace fastdeploy