Files
FastDeploy/fastdeploy/runtime/backends/sophgo/sophgo_backend.cc
thunder95 51be3fea78 [Hackthon_4th 177] Support PP-YOLOE-R with BM1684 (#1809)
* first draft

* add robx iou

* add benchmark for ppyoloe_r

* remove trash code

* fix bugs

* add pybind nms rotated option

* add missing head file

* fix bug

* fix bug2

* fix shape bug

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-04-21 10:48:05 +08:00

305 lines
10 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/runtime/backends/sophgo/sophgo_backend.h"
#include <assert.h>
namespace fastdeploy {
SophgoBackend::~SophgoBackend() { bm_dev_free(handle_); }
/***************************************************************
* @name GetSDKAndDeviceVersion
* @brief get Sophgo sdk and device version
* @param None
* @return bool
* @note None
***************************************************************/
bool SophgoBackend::GetSDKAndDeviceVersion() { return true; }
/***************************************************************
* @name Init
* @brief Initialize Sophgo model
* @param model_file: Binary data for the Sophgo model.
* params_file: None
* option: config
* @return bool
* @note None
***************************************************************/
bool SophgoBackend::Init(const RuntimeOption& option) {
if (option.model_from_memory_) {
FDERROR << "SophgoBackend doesn't support load model from memory, please "
"load model from disk."
<< std::endl;
return false;
}
if (option.model_format != ModelFormat::SOPHGO) {
FDERROR << "SophgoBackend only supports model format SOPHGO, but now it's "
<< option.model_format << "." << std::endl;
return false;
}
if (option.device != Device::SOPHGOTPUD) {
FDERROR << "SophgoBackend only supports device::SOPHGOTPUD, but now it's "
<< option.device << "." << std::endl;
return false;
}
std::string model_file = option.model_file;
// LoadModel
if (!this->LoadModel((char*)model_file.data())) {
FDERROR << "load model failed" << std::endl;
return false;
}
// GetSDKAndDeviceVersion
if (!this->GetSDKAndDeviceVersion()) {
FDERROR << "get SDK and device version failed" << std::endl;
return false;
}
// GetModelInputOutputInfos
if (!this->GetModelInputOutputInfos()) {
FDERROR << "get model input output infos failed" << std::endl;
return false;
}
return true;
}
/***************************************************************
* @name LoadModel
* @brief read Sophgo bmodel
* @param model: Binary data for the Sophgo model.
* @return bool
* @note None
***************************************************************/
bool SophgoBackend::LoadModel(void* model) {
unsigned int card_num = 0;
bm_status_t status = bm_get_card_num(&card_num);
status = bm_dev_request(&handle_, 0);
p_bmrt_ = bmrt_create(handle_);
assert(NULL != p_bmrt_);
bool load_status = bmrt_load_bmodel(p_bmrt_, (char*)model);
assert(load_status);
int network_num = bmrt_get_network_number(p_bmrt_);
const char** net_names = NULL;
bmrt_get_network_names(p_bmrt_, &net_names);
net_name_ = net_names[0];
free(net_names);
net_info_ = bmrt_get_network_info(p_bmrt_, net_name_.c_str());
assert(NULL != net_info_);
return true;
}
/***************************************************************
* @name GetModelInputOutputInfos
* @brief Get the detailed input and output infos of Model
* @param None
* @return bool
* @note None
***************************************************************/
bool SophgoBackend::GetModelInputOutputInfos() {
inputs_desc_.resize(net_info_->input_num);
bm_shape_t* input_shapes = net_info_->stages->input_shapes;
for (int idx = 0; idx < net_info_->input_num; idx++) {
std::string temp_name = (net_info_->input_names)[idx];
std::vector<int> temp_shape{};
temp_shape.resize(input_shapes[idx].num_dims);
for (int i = 0; i < input_shapes[idx].num_dims; i++) {
temp_shape[i] = input_shapes[idx].dims[i];
}
bm_data_type_t* input_dtypes = net_info_->input_dtypes;
// SophgoType to FDDataType
FDDataType temp_dtype = SophgoTensorTypeToFDDataType(*input_dtypes);
TensorInfo temp_input_info = {temp_name, temp_shape, temp_dtype};
inputs_desc_[idx] = temp_input_info;
}
outputs_desc_.resize(net_info_->output_num);
bm_shape_t* output_shapes = net_info_->stages->output_shapes;
for (int idx = 0; idx < net_info_->output_num; idx++) {
std::string temp_name1 = (net_info_->output_names)[idx];
std::vector<int> temp_shape1{};
temp_shape1.resize(output_shapes[idx].num_dims);
for (int i = 0; i < output_shapes[idx].num_dims; i++) {
temp_shape1[i] = output_shapes[idx].dims[i];
}
bm_data_type_t* output_dtypes = net_info_->output_dtypes;
// SophgoType to FDDataType
FDDataType temp_dtype1 = SophgoTensorTypeToFDDataType(*output_dtypes);
TensorInfo temp_output_info = {temp_name1, temp_shape1, temp_dtype1};
outputs_desc_[idx] = temp_output_info;
}
return true;
}
TensorInfo SophgoBackend::GetInputInfo(int index) {
FDASSERT(index < NumInputs(),
"The index: %d should less than the number of inputs: %d.", index,
NumInputs())
return inputs_desc_[index];
}
std::vector<TensorInfo> SophgoBackend::GetInputInfos() { return inputs_desc_; }
TensorInfo SophgoBackend::GetOutputInfo(int index) {
FDASSERT(index < NumOutputs(),
"The index: %d should less than the number of outputs %d.", index,
NumOutputs())
return outputs_desc_[index];
}
std::vector<TensorInfo> SophgoBackend::GetOutputInfos() {
return outputs_desc_;
}
bool SophgoBackend::Infer(std::vector<FDTensor>& inputs,
std::vector<FDTensor>* outputs, bool copy_to_fd) {
int input_size = inputs.size();
assert(input_size != 0);
assert(input_size == NumInputs());
bm_tensor_t input_tensors[input_size];
bm_status_t status = BM_SUCCESS;
RUNTIME_PROFILE_LOOP_H2D_D2H_BEGIN
bm_data_type_t* input_dtypes = net_info_->input_dtypes;
for (int i = 0; i < input_size; i++) {
status = bm_malloc_device_byte(handle_, &input_tensors[i].device_mem,
net_info_->max_input_bytes[i]);
assert(BM_SUCCESS == status);
input_tensors[i].dtype = input_dtypes[i];
input_tensors[i].st_mode = BM_STORE_1N;
input_tensors[i].shape = net_info_->stages[0].input_shapes[i];
unsigned int input_byte = bmrt_tensor_bytesize(&input_tensors[i]);
bm_memcpy_s2d_partial(handle_, input_tensors[i].device_mem,
(void*)inputs[i].Data(),
bmrt_tensor_bytesize(&input_tensors[i]));
}
int output_size = NumOutputs();
bm_tensor_t output_tensors[output_size];
for (int i = 0; i < output_size; i++) {
status = bm_malloc_device_byte(handle_, &output_tensors[i].device_mem,
net_info_->max_output_bytes[i]);
assert(BM_SUCCESS == status);
}
RUNTIME_PROFILE_LOOP_BEGIN(1)
bool launch_status = bmrt_launch_tensor_ex(
p_bmrt_, net_name_.c_str(), input_tensors, net_info_->input_num,
output_tensors, net_info_->output_num, true, false);
assert(launch_status);
status = bm_thread_sync(handle_);
assert(status == BM_SUCCESS);
RUNTIME_PROFILE_LOOP_END
outputs->resize(outputs_desc_.size());
bm_data_type_t* output_dtypes = net_info_->output_dtypes;
for (int i = 0; i < output_size; i++) {
int temp_bytesize = bmrt_tensor_bytesize(&output_tensors[i]); // Byte
float* temp_out = (float*)malloc(temp_bytesize);
bm_memcpy_d2s_partial(handle_, temp_out, output_tensors[i].device_mem,
temp_bytesize);
std::vector<int64_t> temp_shape;
temp_shape.resize(outputs_desc_[i].shape.size());
for (int j = 0; j < outputs_desc_[i].shape.size(); ++j) {
temp_shape[j] = outputs_desc_[i].shape[j];
}
(*outputs)[i].Resize(temp_shape, outputs_desc_[i].dtype,
outputs_desc_[i].name);
memcpy((*outputs)[i].MutableData(), temp_out, (*outputs)[i].Nbytes());
free(temp_out);
}
for (int i = 0; i < input_size; i++) {
bm_free_device(handle_, input_tensors[i].device_mem);
}
for (int i = 0; i < output_size; i++) {
bm_free_device(handle_, output_tensors[i].device_mem);
}
RUNTIME_PROFILE_LOOP_H2D_D2H_END
return true;
}
/***************************************************************
* @name SophgoTensorTypeToFDDataType
* @brief Change SophgoTensorType To FDDataType
* @param bm_data_type_t
* @return None
* @note None
***************************************************************/
FDDataType SophgoBackend::SophgoTensorTypeToFDDataType(bm_data_type_t type) {
if (type == BM_FLOAT16) {
return FDDataType::FP32;
}
if (type == BM_FLOAT32) {
return FDDataType::FP32;
}
if (type == BM_INT8) {
return FDDataType::INT8;
}
if (type == BM_INT16) {
return FDDataType::INT16;
}
if (type == BM_INT32) {
return FDDataType::INT32;
}
if (type == BM_UINT8) {
return FDDataType::UINT8;
}
FDERROR << "FDDataType don't support this type" << std::endl;
return FDDataType::UNKNOWN1;
}
/***************************************************************
* @name FDDataTypeToSophgoTensorType
* @brief Change FDDataType To SophgoTensorType
* @param FDDataType
* @return None
* @note None
***************************************************************/
// Sophgo_tensor_type
bm_data_type_t SophgoBackend::FDDataTypeToSophgoTensorType(
fastdeploy::FDDataType type) {
if (type == FDDataType::FP16) {
return BM_FLOAT16;
}
if (type == FDDataType::FP32) {
return BM_FLOAT32;
}
if (type == FDDataType::INT8) {
return BM_INT8;
}
if (type == FDDataType::INT16) {
return BM_INT16;
}
if (type == FDDataType::INT32) {
return BM_INT32;
}
if (type == FDDataType::UINT8) {
return BM_UINT8;
}
FDERROR << "Sophgo_tensor_type don't support this type" << std::endl;
return BM_FLOAT32;
}
} // namespace fastdeploy