Files
FastDeploy/c_api/fastdeploy_capi/vision/classification/ppcls/model.cc
chenjian 266ae046f2 [C API] Refactor code structure (#1449)
* refactor code

* move files

* fix doc

* fix
2023-02-27 20:19:13 +08:00

108 lines
4.4 KiB
C++

// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy_capi/vision/classification/ppcls/model.h"
#include "fastdeploy_capi/internal/types_internal.h"
#ifdef __cplusplus
extern "C" {
#endif
FD_C_PaddleClasModelWrapper* FD_C_CreatePaddleClasModelWrapper(
const char* model_file, const char* params_file, const char* config_file,
FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper,
const FD_C_ModelFormat model_format) {
auto& runtime_option = CHECK_AND_CONVERT_FD_TYPE(RuntimeOptionWrapper,
fd_c_runtime_option_wrapper);
FD_C_PaddleClasModelWrapper* fd_c_paddleclas_model_wrapper =
new FD_C_PaddleClasModelWrapper();
fd_c_paddleclas_model_wrapper->paddleclas_model =
std::unique_ptr<fastdeploy::vision::classification::PaddleClasModel>(
new fastdeploy::vision::classification::PaddleClasModel(
std::string(model_file), std::string(params_file),
std::string(config_file), *runtime_option,
static_cast<fastdeploy::ModelFormat>(model_format)));
return fd_c_paddleclas_model_wrapper;
}
void FD_C_DestroyPaddleClasModelWrapper(
FD_C_PaddleClasModelWrapper* fd_c_paddleclas_model_wrapper) {
delete fd_c_paddleclas_model_wrapper;
}
FD_C_Bool FD_C_PaddleClasModelWrapperPredict(
FD_C_PaddleClasModelWrapper* fd_c_paddleclas_model_wrapper, FD_C_Mat img,
FD_C_ClassifyResult* fd_c_classify_result) {
cv::Mat* im = reinterpret_cast<cv::Mat*>(img);
auto& paddleclas_model = CHECK_AND_CONVERT_FD_TYPE(
PaddleClasModelWrapper, fd_c_paddleclas_model_wrapper);
FD_C_ClassifyResultWrapper* fd_c_classify_result_wrapper =
FD_C_CreateClassifyResultWrapper();
auto& classify_result = CHECK_AND_CONVERT_FD_TYPE(
ClassifyResultWrapper, fd_c_classify_result_wrapper);
bool successful = paddleclas_model->Predict(im, classify_result.get());
if (successful) {
FD_C_ClassifyResultWrapperToCResult(fd_c_classify_result_wrapper,
fd_c_classify_result);
}
FD_C_DestroyClassifyResultWrapper(fd_c_classify_result_wrapper);
return successful;
}
FD_C_Bool FD_C_PaddleClasModelWrapperInitialized(
FD_C_PaddleClasModelWrapper* fd_c_paddleclas_model_wrapper) {
auto& paddleclas_model = CHECK_AND_CONVERT_FD_TYPE(
PaddleClasModelWrapper, fd_c_paddleclas_model_wrapper);
return paddleclas_model->Initialized();
}
FD_C_Bool FD_C_PaddleClasModelWrapperBatchPredict(
FD_C_PaddleClasModelWrapper* fd_c_paddleclas_model_wrapper,
FD_C_OneDimMat imgs, FD_C_OneDimClassifyResult* results) {
std::vector<cv::Mat> imgs_vec;
std::vector<FD_C_ClassifyResultWrapper*> results_wrapper_out;
std::vector<fastdeploy::vision::ClassifyResult> results_out;
for (int i = 0; i < imgs.size; i++) {
imgs_vec.push_back(*(reinterpret_cast<cv::Mat*>(imgs.data[i])));
FD_C_ClassifyResultWrapper* fd_classify_result_wrapper =
FD_C_CreateClassifyResultWrapper();
results_wrapper_out.push_back(fd_classify_result_wrapper);
}
auto& paddleclas_model = CHECK_AND_CONVERT_FD_TYPE(
PaddleClasModelWrapper, fd_c_paddleclas_model_wrapper);
bool successful = paddleclas_model->BatchPredict(imgs_vec, &results_out);
if (successful) {
// copy results back to FD_C_OneDimClassifyResult
results->size = results_out.size();
results->data = new FD_C_ClassifyResult[results->size];
for (int i = 0; i < results_out.size(); i++) {
(*CHECK_AND_CONVERT_FD_TYPE(ClassifyResultWrapper,
results_wrapper_out[i])) =
std::move(results_out[i]);
FD_C_ClassifyResultWrapperToCResult(results_wrapper_out[i],
&results->data[i]);
}
}
for (int i = 0; i < results_out.size(); i++) {
FD_C_DestroyClassifyResultWrapper(results_wrapper_out[i]);
}
return successful;
}
#ifdef __cplusplus
}
#endif