mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			89 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			89 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include <Eigen/LU>
 | |
| #include "common.h"
 | |
| 
 | |
| // computes an LU factorization of a general M-by-N matrix A using partial
 | |
| // pivoting with row interchanges
 | |
| EIGEN_LAPACK_FUNC(getrf, (int *m, int *n, RealScalar *pa, int *lda, int *ipiv,
 | |
|                           int *info)) {
 | |
|   *info = 0;
 | |
|   if (*m < 0)
 | |
|     *info = -1;
 | |
|   else if (*n < 0)
 | |
|     *info = -2;
 | |
|   else if (*lda < std::max(1, *m))
 | |
|     *info = -4;
 | |
|   if (*info != 0) {
 | |
|     int e = -*info;
 | |
|     return xerbla_(SCALAR_SUFFIX_UP "GETRF", &e, 6);
 | |
|   }
 | |
| 
 | |
|   if (*m == 0 || *n == 0) return 0;
 | |
| 
 | |
|   Scalar *a = reinterpret_cast<Scalar *>(pa);
 | |
|   int nb_transpositions;
 | |
|   int ret =
 | |
|       int(Eigen::internal::partial_lu_impl<Scalar, ColMajor, int>::blocked_lu(
 | |
|           *m, *n, a, *lda, ipiv, nb_transpositions));
 | |
| 
 | |
|   for (int i = 0; i < std::min(*m, *n); ++i) ipiv[i]++;
 | |
| 
 | |
|   if (ret >= 0) *info = ret + 1;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // GETRS solves a system of linear equations
 | |
| //    A * X = B  or  A' * X = B
 | |
| //  with a general N-by-N matrix A using the LU factorization computed  by GETRF
 | |
| EIGEN_LAPACK_FUNC(getrs,
 | |
|                   (char *trans, int *n, int *nrhs, RealScalar *pa, int *lda,
 | |
|                    int *ipiv, RealScalar *pb, int *ldb, int *info)) {
 | |
|   *info = 0;
 | |
|   if (OP(*trans) == INVALID)
 | |
|     *info = -1;
 | |
|   else if (*n < 0)
 | |
|     *info = -2;
 | |
|   else if (*nrhs < 0)
 | |
|     *info = -3;
 | |
|   else if (*lda < std::max(1, *n))
 | |
|     *info = -5;
 | |
|   else if (*ldb < std::max(1, *n))
 | |
|     *info = -8;
 | |
|   if (*info != 0) {
 | |
|     int e = -*info;
 | |
|     return xerbla_(SCALAR_SUFFIX_UP "GETRS", &e, 6);
 | |
|   }
 | |
| 
 | |
|   Scalar *a = reinterpret_cast<Scalar *>(pa);
 | |
|   Scalar *b = reinterpret_cast<Scalar *>(pb);
 | |
|   MatrixType lu(a, *n, *n, *lda);
 | |
|   MatrixType B(b, *n, *nrhs, *ldb);
 | |
| 
 | |
|   for (int i = 0; i < *n; ++i) ipiv[i]--;
 | |
|   if (OP(*trans) == NOTR) {
 | |
|     B = PivotsType(ipiv, *n) * B;
 | |
|     lu.triangularView<UnitLower>().solveInPlace(B);
 | |
|     lu.triangularView<Upper>().solveInPlace(B);
 | |
|   } else if (OP(*trans) == TR) {
 | |
|     lu.triangularView<Upper>().transpose().solveInPlace(B);
 | |
|     lu.triangularView<UnitLower>().transpose().solveInPlace(B);
 | |
|     B = PivotsType(ipiv, *n).transpose() * B;
 | |
|   } else if (OP(*trans) == ADJ) {
 | |
|     lu.triangularView<Upper>().adjoint().solveInPlace(B);
 | |
|     lu.triangularView<UnitLower>().adjoint().solveInPlace(B);
 | |
|     B = PivotsType(ipiv, *n).transpose() * B;
 | |
|   }
 | |
|   for (int i = 0; i < *n; ++i) ipiv[i]++;
 | |
| 
 | |
|   return 0;
 | |
| }
 | 
