mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			65 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			65 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include <Eigen/Eigenvalues>
 | |
| #include "lapack_common.h"
 | |
| 
 | |
| // computes eigen values and vectors of a general N-by-N matrix A
 | |
| EIGEN_LAPACK_FUNC(syev, (char* jobz, char* uplo, int* n, Scalar* a, int* lda,
 | |
|                          Scalar* w, Scalar* /*work*/, int* lwork, int* info)) {
 | |
|   // TODO exploit the work buffer
 | |
|   bool query_size = *lwork == -1;
 | |
| 
 | |
|   *info = 0;
 | |
|   if (*jobz != 'N' && *jobz != 'V')
 | |
|     *info = -1;
 | |
|   else if (UPLO(*uplo) == INVALID)
 | |
|     *info = -2;
 | |
|   else if (*n < 0)
 | |
|     *info = -3;
 | |
|   else if (*lda < std::max(1, *n))
 | |
|     *info = -5;
 | |
|   else if ((!query_size) && *lwork < std::max(1, 3 * *n - 1))
 | |
|     *info = -8;
 | |
| 
 | |
|   if (*info != 0) {
 | |
|     int e = -*info;
 | |
|     return xerbla_(SCALAR_SUFFIX_UP "SYEV ", &e, 6);
 | |
|   }
 | |
| 
 | |
|   if (query_size) {
 | |
|     *lwork = 0;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   if (*n == 0) return 0;
 | |
| 
 | |
|   PlainMatrixType mat(*n, *n);
 | |
|   if (UPLO(*uplo) == UP)
 | |
|     mat = matrix(a, *n, *n, *lda).adjoint();
 | |
|   else
 | |
|     mat = matrix(a, *n, *n, *lda);
 | |
| 
 | |
|   bool computeVectors = *jobz == 'V' || *jobz == 'v';
 | |
|   SelfAdjointEigenSolver<PlainMatrixType> eig(
 | |
|       mat, computeVectors ? ComputeEigenvectors : EigenvaluesOnly);
 | |
| 
 | |
|   if (eig.info() == NoConvergence) {
 | |
|     make_vector(w, *n).setZero();
 | |
|     if (computeVectors) matrix(a, *n, *n, *lda).setIdentity();
 | |
|     //*info = 1;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   make_vector(w, *n) = eig.eigenvalues();
 | |
|   if (computeVectors) matrix(a, *n, *n, *lda) = eig.eigenvectors();
 | |
| 
 | |
|   return 0;
 | |
| }
 | 
