mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			78 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			78 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include <Eigen/Cholesky>
 | |
| #include "lapack_common.h"
 | |
| 
 | |
| // POTRF computes the Cholesky factorization of a real symmetric positive
 | |
| // definite matrix A.
 | |
| EIGEN_LAPACK_FUNC(potrf,
 | |
|                   (char *uplo, int *n, RealScalar *pa, int *lda, int *info)) {
 | |
|   *info = 0;
 | |
|   if (UPLO(*uplo) == INVALID)
 | |
|     *info = -1;
 | |
|   else if (*n < 0)
 | |
|     *info = -2;
 | |
|   else if (*lda < std::max(1, *n))
 | |
|     *info = -4;
 | |
|   if (*info != 0) {
 | |
|     int e = -*info;
 | |
|     return xerbla_(SCALAR_SUFFIX_UP "POTRF", &e, 6);
 | |
|   }
 | |
| 
 | |
|   Scalar *a = reinterpret_cast<Scalar *>(pa);
 | |
|   MatrixType A(a, *n, *n, *lda);
 | |
|   int ret;
 | |
|   if (UPLO(*uplo) == UP)
 | |
|     ret = int(internal::llt_inplace<Scalar, Upper>::blocked(A));
 | |
|   else
 | |
|     ret = int(internal::llt_inplace<Scalar, Lower>::blocked(A));
 | |
| 
 | |
|   if (ret >= 0) *info = ret + 1;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // POTRS solves a system of linear equations A*X = B with a symmetric
 | |
| // positive definite matrix A using the Cholesky factorization
 | |
| // A = U**T*U or A = L*L**T computed by DPOTRF.
 | |
| EIGEN_LAPACK_FUNC(potrs, (char *uplo, int *n, int *nrhs, RealScalar *pa,
 | |
|                           int *lda, RealScalar *pb, int *ldb, int *info)) {
 | |
|   *info = 0;
 | |
|   if (UPLO(*uplo) == INVALID)
 | |
|     *info = -1;
 | |
|   else if (*n < 0)
 | |
|     *info = -2;
 | |
|   else if (*nrhs < 0)
 | |
|     *info = -3;
 | |
|   else if (*lda < std::max(1, *n))
 | |
|     *info = -5;
 | |
|   else if (*ldb < std::max(1, *n))
 | |
|     *info = -7;
 | |
|   if (*info != 0) {
 | |
|     int e = -*info;
 | |
|     return xerbla_(SCALAR_SUFFIX_UP "POTRS", &e, 6);
 | |
|   }
 | |
| 
 | |
|   Scalar *a = reinterpret_cast<Scalar *>(pa);
 | |
|   Scalar *b = reinterpret_cast<Scalar *>(pb);
 | |
|   MatrixType A(a, *n, *n, *lda);
 | |
|   MatrixType B(b, *n, *nrhs, *ldb);
 | |
| 
 | |
|   if (UPLO(*uplo) == UP) {
 | |
|     A.triangularView<Upper>().adjoint().solveInPlace(B);
 | |
|     A.triangularView<Upper>().solveInPlace(B);
 | |
|   } else {
 | |
|     A.triangularView<Lower>().solveInPlace(B);
 | |
|     A.triangularView<Lower>().adjoint().solveInPlace(B);
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | 
