mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			223 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			223 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| 
 | |
| // g++-4.4 -DNOMTL  -Wl,-rpath /usr/local/lib/oski -L /usr/local/lib/oski/ -l
 | |
| // oski -l oski_util -l oski_util_Tid  -DOSKI -I ~/Coding/LinearAlgebra/mtl4/
 | |
| // spmv.cpp  -I .. -O2 -DNDEBUG -lrt  -lm -l oski_mat_CSC_Tid  -loskilt &&
 | |
| // ./a.out r200000 c200000 n100 t1 p1
 | |
| 
 | |
| #define SCALAR double
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <iostream>
 | |
| #include "BenchSparseUtil.h"
 | |
| #include "BenchTimer.h"
 | |
| 
 | |
| #define SPMV_BENCH(CODE) BENCH(t, tries, repeats, CODE);
 | |
| 
 | |
| // #ifdef MKL
 | |
| //
 | |
| // #include "mkl_types.h"
 | |
| // #include "mkl_spblas.h"
 | |
| //
 | |
| // template<typename Lhs,typename Rhs,typename Res>
 | |
| // void mkl_multiply(const Lhs& lhs, const Rhs& rhs, Res& res)
 | |
| // {
 | |
| //   char n = 'N';
 | |
| //   float alpha = 1;
 | |
| //   char matdescra[6];
 | |
| //   matdescra[0] = 'G';
 | |
| //   matdescra[1] = 0;
 | |
| //   matdescra[2] = 0;
 | |
| //   matdescra[3] = 'C';
 | |
| //   mkl_scscmm(&n, lhs.rows(), rhs.cols(), lhs.cols(), &alpha, matdescra,
 | |
| //              lhs._valuePtr(), lhs._innerIndexPtr(), lhs.outerIndexPtr(),
 | |
| //              pntre, b, &ldb, &beta, c, &ldc);
 | |
| // //   mkl_somatcopy('C', 'T', lhs.rows(), lhs.cols(), 1,
 | |
| // //                 lhs._valuePtr(), lhs.rows(), DST, dst_stride);
 | |
| // }
 | |
| //
 | |
| // #endif
 | |
| 
 | |
| int main(int argc, char *argv[]) {
 | |
|   int size = 10000;
 | |
|   int rows = size;
 | |
|   int cols = size;
 | |
|   int nnzPerCol = 40;
 | |
|   int tries = 2;
 | |
|   int repeats = 2;
 | |
| 
 | |
|   bool need_help = false;
 | |
|   for (int i = 1; i < argc; i++) {
 | |
|     if (argv[i][0] == 'r') {
 | |
|       rows = atoi(argv[i] + 1);
 | |
|     } else if (argv[i][0] == 'c') {
 | |
|       cols = atoi(argv[i] + 1);
 | |
|     } else if (argv[i][0] == 'n') {
 | |
|       nnzPerCol = atoi(argv[i] + 1);
 | |
|     } else if (argv[i][0] == 't') {
 | |
|       tries = atoi(argv[i] + 1);
 | |
|     } else if (argv[i][0] == 'p') {
 | |
|       repeats = atoi(argv[i] + 1);
 | |
|     } else {
 | |
|       need_help = true;
 | |
|     }
 | |
|   }
 | |
|   if (need_help) {
 | |
|     std::cout << argv[0] << " r<nb rows> c<nb columns> n<non zeros per column> "
 | |
|                             "t<nb tries> p<nb repeats>\n";
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   std::cout << "SpMV " << rows << " x " << cols << " with " << nnzPerCol
 | |
|             << " non zeros per column. (" << repeats << " repeats, and "
 | |
|             << tries << " tries)\n\n";
 | |
| 
 | |
|   EigenSparseMatrix sm(rows, cols);
 | |
|   DenseVector dv(cols), res(rows);
 | |
|   dv.setRandom();
 | |
| 
 | |
|   BenchTimer t;
 | |
|   while (nnzPerCol >= 4) {
 | |
|     std::cout << "nnz: " << nnzPerCol << "\n";
 | |
|     sm.setZero();
 | |
|     fillMatrix2(nnzPerCol, rows, cols, sm);
 | |
| 
 | |
| // dense matrices
 | |
| #ifdef DENSEMATRIX
 | |
|     {
 | |
|       DenseMatrix dm(rows, cols), (rows, cols);
 | |
|       eiToDense(sm, dm);
 | |
| 
 | |
|       SPMV_BENCH(res = dm * sm);
 | |
|       std::cout << "Dense       " << t.value() / repeats << "\t";
 | |
| 
 | |
|       SPMV_BENCH(res = dm.transpose() * sm);
 | |
|       std::cout << t.value() / repeats << endl;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     // eigen sparse matrices
 | |
|     {
 | |
|       SPMV_BENCH(res.noalias() += sm * dv;)
 | |
|       std::cout << "Eigen       " << t.value() / repeats << "\t";
 | |
| 
 | |
|       SPMV_BENCH(res.noalias() += sm.transpose() * dv;)
 | |
|       std::cout << t.value() / repeats << endl;
 | |
|     }
 | |
| 
 | |
| // CSparse
 | |
| #ifdef CSPARSE
 | |
|     {
 | |
|       std::cout << "CSparse \n";
 | |
|       cs *csm;
 | |
|       eiToCSparse(sm, csm);
 | |
| 
 | |
|       //       BENCH();
 | |
|       //       timer.stop();
 | |
|       //       std::cout << "   a * b:\t" << timer.value() << endl;
 | |
| 
 | |
|       //       BENCH( { m3 = cs_sorted_multiply2(m1, m2); cs_spfree(m3); } );
 | |
|       //       std::cout << "   a * b:\t" << timer.value() << endl;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #ifdef OSKI
 | |
|     {
 | |
|       oski_matrix_t om;
 | |
|       oski_vecview_t ov, ores;
 | |
|       oski_Init();
 | |
|       om = oski_CreateMatCSC(sm._outerIndexPtr(), sm._innerIndexPtr(),
 | |
|                              sm._valuePtr(), rows, cols, SHARE_INPUTMAT, 1,
 | |
|                              INDEX_ZERO_BASED);
 | |
|       ov = oski_CreateVecView(dv.data(), cols, STRIDE_UNIT);
 | |
|       ores = oski_CreateVecView(res.data(), rows, STRIDE_UNIT);
 | |
| 
 | |
|       SPMV_BENCH(oski_MatMult(om, OP_NORMAL, 1, ov, 0, ores));
 | |
|       std::cout << "OSKI        " << t.value() / repeats << "\t";
 | |
| 
 | |
|       SPMV_BENCH(oski_MatMult(om, OP_TRANS, 1, ov, 0, ores));
 | |
|       std::cout << t.value() / repeats << "\n";
 | |
| 
 | |
|       // tune
 | |
|       t.reset();
 | |
|       t.start();
 | |
|       oski_SetHintMatMult(om, OP_NORMAL, 1.0, SYMBOLIC_VEC, 0.0, SYMBOLIC_VEC,
 | |
|                           ALWAYS_TUNE_AGGRESSIVELY);
 | |
|       oski_TuneMat(om);
 | |
|       t.stop();
 | |
|       double tuning = t.value();
 | |
| 
 | |
|       SPMV_BENCH(oski_MatMult(om, OP_NORMAL, 1, ov, 0, ores));
 | |
|       std::cout << "OSKI tuned  " << t.value() / repeats << "\t";
 | |
| 
 | |
|       SPMV_BENCH(oski_MatMult(om, OP_TRANS, 1, ov, 0, ores));
 | |
|       std::cout << t.value() / repeats << "\t(" << tuning << ")\n";
 | |
| 
 | |
|       oski_DestroyMat(om);
 | |
|       oski_DestroyVecView(ov);
 | |
|       oski_DestroyVecView(ores);
 | |
|       oski_Close();
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #ifndef NOUBLAS
 | |
|     {
 | |
|       using namespace boost::numeric;
 | |
|       UblasMatrix um(rows, cols);
 | |
|       eiToUblas(sm, um);
 | |
| 
 | |
|       boost::numeric::ublas::vector<Scalar> uv(cols), ures(rows);
 | |
|       Map<Matrix<Scalar, Dynamic, 1> >(&uv[0], cols) = dv;
 | |
|       Map<Matrix<Scalar, Dynamic, 1> >(&ures[0], rows) = res;
 | |
| 
 | |
|       SPMV_BENCH(ublas::axpy_prod(um, uv, ures, true));
 | |
|       std::cout << "ublas       " << t.value() / repeats << "\t";
 | |
| 
 | |
|       SPMV_BENCH(
 | |
|           ublas::axpy_prod(boost::numeric::ublas::trans(um), uv, ures, true));
 | |
|       std::cout << t.value() / repeats << endl;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| // GMM++
 | |
| #ifndef NOGMM
 | |
|     {
 | |
|       GmmSparse gm(rows, cols);
 | |
|       eiToGmm(sm, gm);
 | |
| 
 | |
|       std::vector<Scalar> gv(cols), gres(rows);
 | |
|       Map<Matrix<Scalar, Dynamic, 1> >(&gv[0], cols) = dv;
 | |
|       Map<Matrix<Scalar, Dynamic, 1> >(&gres[0], rows) = res;
 | |
| 
 | |
|       SPMV_BENCH(gmm::mult(gm, gv, gres));
 | |
|       std::cout << "GMM++       " << t.value() / repeats << "\t";
 | |
| 
 | |
|       SPMV_BENCH(gmm::mult(gmm::transposed(gm), gv, gres));
 | |
|       std::cout << t.value() / repeats << endl;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| // MTL4
 | |
| #ifndef NOMTL
 | |
|     {
 | |
|       MtlSparse mm(rows, cols);
 | |
|       eiToMtl(sm, mm);
 | |
|       mtl::dense_vector<Scalar> mv(cols, 1.0);
 | |
|       mtl::dense_vector<Scalar> mres(rows, 1.0);
 | |
| 
 | |
|       SPMV_BENCH(mres = mm * mv);
 | |
|       std::cout << "MTL4        " << t.value() / repeats << "\t";
 | |
| 
 | |
|       SPMV_BENCH(mres = trans(mm) * mv);
 | |
|       std::cout << t.value() / repeats << endl;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     std::cout << "\n";
 | |
| 
 | |
|     if (nnzPerCol == 1) break;
 | |
|     nnzPerCol -= nnzPerCol / 2;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | 
