mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			324 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			324 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| 
 | |
| // g++ -O3 -g0 -DNDEBUG  sparse_product.cpp -I..
 | |
| // -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 &&
 | |
| // ./a.out
 | |
| // g++ -O3 -g0 -DNDEBUG  sparse_product.cpp -I..
 | |
| // -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 -DSIZE=2000 && ./a.out
 | |
| // -DNOGMM -DNOMTL -DCSPARSE
 | |
| // -I /home/gael/Coding/LinearAlgebra/CSparse/Include/
 | |
| // /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a
 | |
| 
 | |
| #include <typeinfo>
 | |
| 
 | |
| #ifndef SIZE
 | |
| #define SIZE 1000000
 | |
| #endif
 | |
| 
 | |
| #ifndef NNZPERCOL
 | |
| #define NNZPERCOL 6
 | |
| #endif
 | |
| 
 | |
| #ifndef REPEAT
 | |
| #define REPEAT 1
 | |
| #endif
 | |
| 
 | |
| #include <algorithm>
 | |
| #include "BenchSparseUtil.h"
 | |
| #include "BenchTimer.h"
 | |
| #include "BenchUtil.h"
 | |
| 
 | |
| #ifndef NBTRIES
 | |
| #define NBTRIES 1
 | |
| #endif
 | |
| 
 | |
| #define BENCH(X)                          \
 | |
|   timer.reset();                          \
 | |
|   for (int _j = 0; _j < NBTRIES; ++_j) {  \
 | |
|     timer.start();                        \
 | |
|     for (int _k = 0; _k < REPEAT; ++_k) { \
 | |
|       X                                   \
 | |
|     }                                     \
 | |
|     timer.stop();                         \
 | |
|   }
 | |
| 
 | |
| // #ifdef MKL
 | |
| //
 | |
| // #include "mkl_types.h"
 | |
| // #include "mkl_spblas.h"
 | |
| //
 | |
| // template<typename Lhs,typename Rhs,typename Res>
 | |
| // void mkl_multiply(const Lhs& lhs, const Rhs& rhs, Res& res)
 | |
| // {
 | |
| //   char n = 'N';
 | |
| //   float alpha = 1;
 | |
| //   char matdescra[6];
 | |
| //   matdescra[0] = 'G';
 | |
| //   matdescra[1] = 0;
 | |
| //   matdescra[2] = 0;
 | |
| //   matdescra[3] = 'C';
 | |
| //   mkl_scscmm(&n, lhs.rows(), rhs.cols(), lhs.cols(), &alpha, matdescra,
 | |
| //              lhs._valuePtr(), lhs._innerIndexPtr(), lhs.outerIndexPtr(),
 | |
| //              pntre, b, &ldb, &beta, c, &ldc);
 | |
| // //   mkl_somatcopy('C', 'T', lhs.rows(), lhs.cols(), 1,
 | |
| // //                 lhs._valuePtr(), lhs.rows(), DST, dst_stride);
 | |
| // }
 | |
| //
 | |
| // #endif
 | |
| 
 | |
| #ifdef CSPARSE
 | |
| cs* cs_sorted_multiply(const cs* a, const cs* b) {
 | |
|   //   return cs_multiply(a,b);
 | |
| 
 | |
|   cs* A = cs_transpose(a, 1);
 | |
|   cs* B = cs_transpose(b, 1);
 | |
|   cs* D = cs_multiply(B, A); /* D = B'*A' */
 | |
|   cs_spfree(A);
 | |
|   cs_spfree(B);
 | |
|   cs_dropzeros(D);            /* drop zeros from D */
 | |
|   cs* C = cs_transpose(D, 1); /* C = D', so that C is sorted */
 | |
|   cs_spfree(D);
 | |
|   return C;
 | |
| 
 | |
|   //   cs* A = cs_transpose(a, 1);
 | |
|   //   cs* C = cs_transpose(A, 1);
 | |
|   //   return C;
 | |
| }
 | |
| 
 | |
| cs* cs_sorted_multiply2(const cs* a, const cs* b) {
 | |
|   cs* D = cs_multiply(a, b);
 | |
|   cs* E = cs_transpose(D, 1);
 | |
|   cs_spfree(D);
 | |
|   cs* C = cs_transpose(E, 1);
 | |
|   cs_spfree(E);
 | |
|   return C;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void bench_sort();
 | |
| 
 | |
| int main(int argc, char* argv[]) {
 | |
|   //   bench_sort();
 | |
| 
 | |
|   int rows = SIZE;
 | |
|   int cols = SIZE;
 | |
|   float density = DENSITY;
 | |
| 
 | |
|   EigenSparseMatrix sm1(rows, cols), sm2(rows, cols), sm3(rows, cols),
 | |
|       sm4(rows, cols);
 | |
| 
 | |
|   BenchTimer timer;
 | |
|   for (int nnzPerCol = NNZPERCOL; nnzPerCol > 1; nnzPerCol /= 1.1) {
 | |
|     sm1.setZero();
 | |
|     sm2.setZero();
 | |
|     fillMatrix2(nnzPerCol, rows, cols, sm1);
 | |
|     fillMatrix2(nnzPerCol, rows, cols, sm2);
 | |
| //     std::cerr << "filling OK\n";
 | |
| 
 | |
| // dense matrices
 | |
| #ifdef DENSEMATRIX
 | |
|     {
 | |
|       std::cout << "Eigen Dense\t" << nnzPerCol << "%\n";
 | |
|       DenseMatrix m1(rows, cols), m2(rows, cols), m3(rows, cols);
 | |
|       eiToDense(sm1, m1);
 | |
|       eiToDense(sm2, m2);
 | |
| 
 | |
|       timer.reset();
 | |
|       timer.start();
 | |
|       for (int k = 0; k < REPEAT; ++k) m3 = m1 * m2;
 | |
|       timer.stop();
 | |
|       std::cout << "   a * b:\t" << timer.value() << endl;
 | |
| 
 | |
|       timer.reset();
 | |
|       timer.start();
 | |
|       for (int k = 0; k < REPEAT; ++k) m3 = m1.transpose() * m2;
 | |
|       timer.stop();
 | |
|       std::cout << "   a' * b:\t" << timer.value() << endl;
 | |
| 
 | |
|       timer.reset();
 | |
|       timer.start();
 | |
|       for (int k = 0; k < REPEAT; ++k) m3 = m1.transpose() * m2.transpose();
 | |
|       timer.stop();
 | |
|       std::cout << "   a' * b':\t" << timer.value() << endl;
 | |
| 
 | |
|       timer.reset();
 | |
|       timer.start();
 | |
|       for (int k = 0; k < REPEAT; ++k) m3 = m1 * m2.transpose();
 | |
|       timer.stop();
 | |
|       std::cout << "   a * b':\t" << timer.value() << endl;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     // eigen sparse matrices
 | |
|     {
 | |
|       std::cout << "Eigen sparse\t"
 | |
|                 << sm1.nonZeros() / (float(sm1.rows()) * float(sm1.cols())) *
 | |
|                        100
 | |
|                 << "% * "
 | |
|                 << sm2.nonZeros() / (float(sm2.rows()) * float(sm2.cols())) *
 | |
|                        100
 | |
|                 << "%\n";
 | |
| 
 | |
|       BENCH(sm3 = sm1 * sm2;)
 | |
|       std::cout << "   a * b:\t" << timer.value() << endl;
 | |
| 
 | |
|       //       BENCH(sm3 = sm1.transpose() * sm2; )
 | |
|       //       std::cout << "   a' * b:\t" << timer.value() << endl;
 | |
|       // //
 | |
|       //       BENCH(sm3 = sm1.transpose() * sm2.transpose(); )
 | |
|       //       std::cout << "   a' * b':\t" << timer.value() << endl;
 | |
|       // //
 | |
|       //       BENCH(sm3 = sm1 * sm2.transpose(); )
 | |
|       //       std::cout << "   a * b' :\t" << timer.value() << endl;
 | |
| 
 | |
|       //       std::cout << "\n";
 | |
|       //
 | |
|       //       BENCH( sm3._experimentalNewProduct(sm1, sm2); )
 | |
|       //       std::cout << "   a * b:\t" << timer.value() << endl;
 | |
|       //
 | |
|       //       BENCH(sm3._experimentalNewProduct(sm1.transpose(),sm2); )
 | |
|       //       std::cout << "   a' * b:\t" << timer.value() << endl;
 | |
|       // //
 | |
|       //       BENCH(sm3._experimentalNewProduct(sm1.transpose(),sm2.transpose());
 | |
|       //       )
 | |
|       //       std::cout << "   a' * b':\t" << timer.value() << endl;
 | |
|       // //
 | |
|       //       BENCH(sm3._experimentalNewProduct(sm1, sm2.transpose());)
 | |
|       //       std::cout << "   a * b' :\t" << timer.value() << endl;
 | |
|     }
 | |
| 
 | |
| // eigen dyn-sparse matrices
 | |
| /*{
 | |
|   DynamicSparseMatrix<Scalar> m1(sm1), m2(sm2), m3(sm3);
 | |
|   std::cout << "Eigen dyn-sparse\t" <<
 | |
| m1.nonZeros()/(float(m1.rows())*float(m1.cols()))*100 << "% * "
 | |
|             << m2.nonZeros()/(float(m2.rows())*float(m2.cols()))*100 << "%\n";
 | |
| 
 | |
| //       timer.reset();
 | |
| //       timer.start();
 | |
|   BENCH(for (int k=0; k<REPEAT; ++k) m3 = m1 * m2;)
 | |
| //       timer.stop();
 | |
|   std::cout << "   a * b:\t" << timer.value() << endl;
 | |
| //       std::cout << sm3 << "\n";
 | |
| 
 | |
|   timer.reset();
 | |
|   timer.start();
 | |
| //       std::cerr << "transpose...\n";
 | |
| //       EigenSparseMatrix sm4 = sm1.transpose();
 | |
| //       std::cout << sm4.nonZeros() << " == " << sm1.nonZeros() << "\n";
 | |
| //       exit(1);
 | |
| //       std::cerr << "transpose OK\n";
 | |
| //       std::cout << sm1 << "\n\n" << sm1.transpose() << "\n\n" <<
 | |
| sm4.transpose() << "\n\n";
 | |
|   BENCH(for (int k=0; k<REPEAT; ++k) m3 = m1.transpose() * m2;)
 | |
| //       timer.stop();
 | |
|   std::cout << "   a' * b:\t" << timer.value() << endl;
 | |
| 
 | |
| //       timer.reset();
 | |
| //       timer.start();
 | |
|   BENCH( for (int k=0; k<REPEAT; ++k) m3 = m1.transpose() * m2.transpose(); )
 | |
| //       timer.stop();
 | |
|   std::cout << "   a' * b':\t" << timer.value() << endl;
 | |
| 
 | |
| //       timer.reset();
 | |
| //       timer.start();
 | |
|   BENCH( for (int k=0; k<REPEAT; ++k) m3 = m1 * m2.transpose(); )
 | |
| //       timer.stop();
 | |
|   std::cout << "   a * b' :\t" << timer.value() << endl;
 | |
| }*/
 | |
| 
 | |
| // CSparse
 | |
| #ifdef CSPARSE
 | |
|     {
 | |
|       std::cout << "CSparse \t" << nnzPerCol << "%\n";
 | |
|       cs *m1, *m2, *m3;
 | |
|       eiToCSparse(sm1, m1);
 | |
|       eiToCSparse(sm2, m2);
 | |
| 
 | |
|       BENCH({
 | |
|         m3 = cs_sorted_multiply(m1, m2);
 | |
|         if (!m3) {
 | |
|           std::cerr << "cs_multiply failed\n";
 | |
|         }
 | |
|         //         cs_print(m3, 0);
 | |
|         cs_spfree(m3);
 | |
|       });
 | |
|       //       timer.stop();
 | |
|       std::cout << "   a * b:\t" << timer.value() << endl;
 | |
| 
 | |
|       //       BENCH( { m3 = cs_sorted_multiply2(m1, m2); cs_spfree(m3); } );
 | |
|       //       std::cout << "   a * b:\t" << timer.value() << endl;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #ifndef NOUBLAS
 | |
|     {
 | |
|       std::cout << "ublas\t" << nnzPerCol << "%\n";
 | |
|       UBlasSparse m1(rows, cols), m2(rows, cols), m3(rows, cols);
 | |
|       eiToUblas(sm1, m1);
 | |
|       eiToUblas(sm2, m2);
 | |
| 
 | |
|       BENCH(boost::numeric::ublas::prod(m1, m2, m3););
 | |
|       std::cout << "   a * b:\t" << timer.value() << endl;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| // GMM++
 | |
| #ifndef NOGMM
 | |
|     {
 | |
|       std::cout << "GMM++ sparse\t" << nnzPerCol << "%\n";
 | |
|       GmmDynSparse gmmT3(rows, cols);
 | |
|       GmmSparse m1(rows, cols), m2(rows, cols), m3(rows, cols);
 | |
|       eiToGmm(sm1, m1);
 | |
|       eiToGmm(sm2, m2);
 | |
| 
 | |
|       BENCH(gmm::mult(m1, m2, gmmT3););
 | |
|       std::cout << "   a * b:\t" << timer.value() << endl;
 | |
| 
 | |
|       //       BENCH(gmm::mult(gmm::transposed(m1), m2, gmmT3););
 | |
|       //       std::cout << "   a' * b:\t" << timer.value() << endl;
 | |
|       //
 | |
|       //       if (rows<500)
 | |
|       //       {
 | |
|       //         BENCH(gmm::mult(gmm::transposed(m1), gmm::transposed(m2),
 | |
|       //         gmmT3););
 | |
|       //         std::cout << "   a' * b':\t" << timer.value() << endl;
 | |
|       //
 | |
|       //         BENCH(gmm::mult(m1, gmm::transposed(m2), gmmT3););
 | |
|       //         std::cout << "   a * b':\t" << timer.value() << endl;
 | |
|       //       }
 | |
|       //       else
 | |
|       //       {
 | |
|       //         std::cout << "   a' * b':\t" << "forever" << endl;
 | |
|       //         std::cout << "   a * b':\t" << "forever" << endl;
 | |
|       //       }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| // MTL4
 | |
| #ifndef NOMTL
 | |
|     {
 | |
|       std::cout << "MTL4\t" << nnzPerCol << "%\n";
 | |
|       MtlSparse m1(rows, cols), m2(rows, cols), m3(rows, cols);
 | |
|       eiToMtl(sm1, m1);
 | |
|       eiToMtl(sm2, m2);
 | |
| 
 | |
|       BENCH(m3 = m1 * m2;);
 | |
|       std::cout << "   a * b:\t" << timer.value() << endl;
 | |
| 
 | |
|       //       BENCH(m3 = trans(m1) * m2;);
 | |
|       //       std::cout << "   a' * b:\t" << timer.value() << endl;
 | |
|       //
 | |
|       //       BENCH(m3 = trans(m1) * trans(m2););
 | |
|       //       std::cout << "  a' * b':\t" << timer.value() << endl;
 | |
|       //
 | |
|       //       BENCH(m3 = m1 * trans(m2););
 | |
|       //       std::cout << "   a * b' :\t" << timer.value() << endl;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     std::cout << "\n\n";
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | 
