mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			230 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			230 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // #define EIGEN_TAUCS_SUPPORT
 | |
| // #define EIGEN_CHOLMOD_SUPPORT
 | |
| #include <Eigen/Sparse>
 | |
| #include <iostream>
 | |
| 
 | |
| // g++ -DSIZE=10000 -DDENSITY=0.001  sparse_cholesky.cpp -I.. -DDENSEMATRI -O3
 | |
| // -g0 -DNDEBUG   -DNBTRIES=1 -I /home/gael/Coding/LinearAlgebra/taucs_full/src/
 | |
| // -I/home/gael/Coding/LinearAlgebra/taucs_full/build/linux/
 | |
| // -L/home/gael/Coding/LinearAlgebra/taucs_full/lib/linux/ -ltaucs
 | |
| // /home/gael/Coding/LinearAlgebra/GotoBLAS/libgoto.a -lpthread -I
 | |
| // /home/gael/Coding/LinearAlgebra/SuiteSparse/CHOLMOD/Include/ $CHOLLIB -I
 | |
| // /home/gael/Coding/LinearAlgebra/SuiteSparse/UFconfig/
 | |
| // /home/gael/Coding/LinearAlgebra/SuiteSparse/CCOLAMD/Lib/libccolamd.a
 | |
| // /home/gael/Coding/LinearAlgebra/SuiteSparse/CHOLMOD/Lib/libcholmod.a -lmetis
 | |
| // /home/gael/Coding/LinearAlgebra/SuiteSparse/AMD/Lib/libamd.a
 | |
| // /home/gael/Coding/LinearAlgebra/SuiteSparse/CAMD/Lib/libcamd.a
 | |
| // /home/gael/Coding/LinearAlgebra/SuiteSparse/CCOLAMD/Lib/libccolamd.a
 | |
| // /home/gael/Coding/LinearAlgebra/SuiteSparse/COLAMD/Lib/libcolamd.a -llapack
 | |
| // && ./a.out
 | |
| 
 | |
| #define NOGMM
 | |
| #define NOMTL
 | |
| 
 | |
| #ifndef SIZE
 | |
| #define SIZE 10
 | |
| #endif
 | |
| 
 | |
| #ifndef DENSITY
 | |
| #define DENSITY 0.01
 | |
| #endif
 | |
| 
 | |
| #ifndef REPEAT
 | |
| #define REPEAT 1
 | |
| #endif
 | |
| 
 | |
| #include "BenchSparseUtil.h"
 | |
| 
 | |
| #ifndef MINDENSITY
 | |
| #define MINDENSITY 0.0004
 | |
| #endif
 | |
| 
 | |
| #ifndef NBTRIES
 | |
| #define NBTRIES 10
 | |
| #endif
 | |
| 
 | |
| #define BENCH(X)                          \
 | |
|   timer.reset();                          \
 | |
|   for (int _j = 0; _j < NBTRIES; ++_j) {  \
 | |
|     timer.start();                        \
 | |
|     for (int _k = 0; _k < REPEAT; ++_k) { \
 | |
|       X                                   \
 | |
|     }                                     \
 | |
|     timer.stop();                         \
 | |
|   }
 | |
| 
 | |
| // typedef SparseMatrix<Scalar,UpperTriangular> EigenSparseTriMatrix;
 | |
| typedef SparseMatrix<Scalar, SelfAdjoint | LowerTriangular>
 | |
|     EigenSparseSelfAdjointMatrix;
 | |
| 
 | |
| void fillSpdMatrix(float density, int rows, int cols,
 | |
|                    EigenSparseSelfAdjointMatrix& dst) {
 | |
|   dst.startFill(rows * cols * density);
 | |
|   for (int j = 0; j < cols; j++) {
 | |
|     dst.fill(j, j) = internal::random<Scalar>(10, 20);
 | |
|     for (int i = j + 1; i < rows; i++) {
 | |
|       Scalar v = (internal::random<float>(0, 1) < density)
 | |
|                      ? internal::random<Scalar>()
 | |
|                      : 0;
 | |
|       if (v != 0) dst.fill(i, j) = v;
 | |
|     }
 | |
|   }
 | |
|   dst.endFill();
 | |
| }
 | |
| 
 | |
| #include <Eigen/Cholesky>
 | |
| 
 | |
| template <int Backend>
 | |
| void doEigen(const char* name, const EigenSparseSelfAdjointMatrix& sm1,
 | |
|              int flags = 0) {
 | |
|   std::cout << name << "..." << std::flush;
 | |
|   BenchTimer timer;
 | |
|   timer.start();
 | |
|   SparseLLT<EigenSparseSelfAdjointMatrix, Backend> chol(sm1, flags);
 | |
|   timer.stop();
 | |
|   std::cout << ":\t" << timer.value() << endl;
 | |
| 
 | |
|   std::cout << "  nnz: " << sm1.nonZeros() << " => "
 | |
|             << chol.matrixL().nonZeros() << "\n";
 | |
|   //   std::cout << "sparse\n" << chol.matrixL() << "%\n";
 | |
| }
 | |
| 
 | |
| int main(int argc, char* argv[]) {
 | |
|   int rows = SIZE;
 | |
|   int cols = SIZE;
 | |
|   float density = DENSITY;
 | |
|   BenchTimer timer;
 | |
| 
 | |
|   VectorXf b = VectorXf::Random(cols);
 | |
|   VectorXf x = VectorXf::Random(cols);
 | |
| 
 | |
|   bool densedone = false;
 | |
| 
 | |
|   // for (float density = DENSITY; density>=MINDENSITY; density*=0.5)
 | |
|   //   float density = 0.5;
 | |
|   {
 | |
|     EigenSparseSelfAdjointMatrix sm1(rows, cols);
 | |
|     std::cout << "Generate sparse matrix (might take a while)...\n";
 | |
|     fillSpdMatrix(density, rows, cols, sm1);
 | |
|     std::cout << "DONE\n\n";
 | |
| 
 | |
| // dense matrices
 | |
| #ifdef DENSEMATRIX
 | |
|     if (!densedone) {
 | |
|       densedone = true;
 | |
|       std::cout << "Eigen Dense\t" << density * 100 << "%\n";
 | |
|       DenseMatrix m1(rows, cols);
 | |
|       eiToDense(sm1, m1);
 | |
|       m1 = (m1 + m1.transpose()).eval();
 | |
|       m1.diagonal() *= 0.5;
 | |
| 
 | |
|       //       BENCH(LLT<DenseMatrix> chol(m1);)
 | |
|       //       std::cout << "dense:\t" << timer.value() << endl;
 | |
| 
 | |
|       BenchTimer timer;
 | |
|       timer.start();
 | |
|       LLT<DenseMatrix> chol(m1);
 | |
|       timer.stop();
 | |
|       std::cout << "dense:\t" << timer.value() << endl;
 | |
|       int count = 0;
 | |
|       for (int j = 0; j < cols; ++j)
 | |
|         for (int i = j; i < rows; ++i)
 | |
|           if (!internal::isMuchSmallerThan(internal::abs(chol.matrixL()(i, j)),
 | |
|                                            0.1))
 | |
|             count++;
 | |
|       std::cout << "dense: "
 | |
|                 << "nnz = " << count << "\n";
 | |
|       //       std::cout << "dense:\n" << m1 << "\n\n" << chol.matrixL() <<
 | |
|       //       endl;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     // eigen sparse matrices
 | |
|     doEigen<Eigen::DefaultBackend>("Eigen/Sparse", sm1,
 | |
|                                    Eigen::IncompleteFactorization);
 | |
| 
 | |
| #ifdef EIGEN_CHOLMOD_SUPPORT
 | |
|     doEigen<Eigen::Cholmod>("Eigen/Cholmod", sm1,
 | |
|                             Eigen::IncompleteFactorization);
 | |
| #endif
 | |
| 
 | |
| #ifdef EIGEN_TAUCS_SUPPORT
 | |
|     doEigen<Eigen::Taucs>("Eigen/Taucs", sm1, Eigen::IncompleteFactorization);
 | |
| #endif
 | |
| 
 | |
| #if 0
 | |
|     // TAUCS
 | |
|     {
 | |
|       taucs_ccs_matrix A = sm1.asTaucsMatrix();
 | |
| 
 | |
|       //BENCH(taucs_ccs_matrix* chol = taucs_ccs_factor_llt(&A, 0, 0);)
 | |
| //       BENCH(taucs_supernodal_factor_to_ccs(taucs_ccs_factor_llt_ll(&A));)
 | |
| //       std::cout << "taucs:\t" << timer.value() << endl;
 | |
| 
 | |
|       taucs_ccs_matrix* chol = taucs_ccs_factor_llt(&A, 0, 0);
 | |
| 
 | |
|       for (int j=0; j<cols; ++j)
 | |
|       {
 | |
|         for (int i=chol->colptr[j]; i<chol->colptr[j+1]; ++i)
 | |
|           std::cout << chol->values.d[i] << " ";
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // CHOLMOD
 | |
| #ifdef EIGEN_CHOLMOD_SUPPORT
 | |
|     {
 | |
|       cholmod_common c;
 | |
|       cholmod_start (&c);
 | |
|       cholmod_sparse A;
 | |
|       cholmod_factor *L;
 | |
| 
 | |
|       A = sm1.asCholmodMatrix();
 | |
|       BenchTimer timer;
 | |
| //       timer.reset();
 | |
|       timer.start();
 | |
|       std::vector<int> perm(cols);
 | |
| //       std::vector<int> set(ncols);
 | |
|       for (int i=0; i<cols; ++i)
 | |
|         perm[i] = i;
 | |
| //       c.nmethods = 1;
 | |
| //       c.method[0] = 1;
 | |
| 
 | |
|       c.nmethods = 1;
 | |
|       c.method [0].ordering = CHOLMOD_NATURAL;
 | |
|       c.postorder = 0;
 | |
|       c.final_ll = 1;
 | |
| 
 | |
|       L = cholmod_analyze_p(&A, &perm[0], &perm[0], cols, &c);
 | |
|       timer.stop();
 | |
|       std::cout << "cholmod/analyze:\t" << timer.value() << endl;
 | |
|       timer.reset();
 | |
|       timer.start();
 | |
|       cholmod_factorize(&A, L, &c);
 | |
|       timer.stop();
 | |
|       std::cout << "cholmod/factorize:\t" << timer.value() << endl;
 | |
| 
 | |
|       cholmod_sparse* cholmat = cholmod_factor_to_sparse(L, &c);
 | |
| 
 | |
|       cholmod_print_factor(L, "Factors", &c);
 | |
| 
 | |
|       cholmod_print_sparse(cholmat, "Chol", &c);
 | |
|       cholmod_write_sparse(stdout, cholmat, 0, 0, &c);
 | |
| //
 | |
| //       cholmod_print_sparse(&A, "A", &c);
 | |
| //       cholmod_write_sparse(stdout, &A, 0, 0, &c);
 | |
| 
 | |
| 
 | |
| //       for (int j=0; j<cols; ++j)
 | |
| //       {
 | |
| //           for (int i=chol->colptr[j]; i<chol->colptr[j+1]; ++i)
 | |
| //             std::cout << chol->values.s[i] << " ";
 | |
| //       }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | 
