mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			368 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			368 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include <Eigen/Core>
 | |
| #include <iostream>
 | |
| #include <typeinfo>
 | |
| #include "BenchTimer.h"
 | |
| using namespace Eigen;
 | |
| using namespace std;
 | |
| 
 | |
| template <typename T>
 | |
| EIGEN_DONT_INLINE typename T::Scalar sqsumNorm(T& v) {
 | |
|   return v.norm();
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| EIGEN_DONT_INLINE typename T::Scalar stableNorm(T& v) {
 | |
|   return v.stableNorm();
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| EIGEN_DONT_INLINE typename T::Scalar hypotNorm(T& v) {
 | |
|   return v.hypotNorm();
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| EIGEN_DONT_INLINE typename T::Scalar blueNorm(T& v) {
 | |
|   return v.blueNorm();
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| EIGEN_DONT_INLINE typename T::Scalar lapackNorm(T& v) {
 | |
|   typedef typename T::Scalar Scalar;
 | |
|   int n = v.size();
 | |
|   Scalar scale = 0;
 | |
|   Scalar ssq = 1;
 | |
|   for (int i = 0; i < n; ++i) {
 | |
|     Scalar ax = std::abs(v.coeff(i));
 | |
|     if (scale >= ax) {
 | |
|       ssq += numext::abs2(ax / scale);
 | |
|     } else {
 | |
|       ssq = Scalar(1) + ssq * numext::abs2(scale / ax);
 | |
|       scale = ax;
 | |
|     }
 | |
|   }
 | |
|   return scale * std::sqrt(ssq);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| EIGEN_DONT_INLINE typename T::Scalar twopassNorm(T& v) {
 | |
|   typedef typename T::Scalar Scalar;
 | |
|   Scalar s = v.array().abs().maxCoeff();
 | |
|   return s * (v / s).norm();
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| EIGEN_DONT_INLINE typename T::Scalar bl2passNorm(T& v) {
 | |
|   return v.stableNorm();
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| EIGEN_DONT_INLINE typename T::Scalar divacNorm(T& v) {
 | |
|   int n = v.size() / 2;
 | |
|   for (int i = 0; i < n; ++i)
 | |
|     v(i) = v(2 * i) * v(2 * i) + v(2 * i + 1) * v(2 * i + 1);
 | |
|   n = n / 2;
 | |
|   while (n > 0) {
 | |
|     for (int i = 0; i < n; ++i) v(i) = v(2 * i) + v(2 * i + 1);
 | |
|     n = n / 2;
 | |
|   }
 | |
|   return std::sqrt(v(0));
 | |
| }
 | |
| 
 | |
| namespace Eigen {
 | |
| namespace internal {
 | |
| #ifdef EIGEN_VECTORIZE
 | |
| Packet4f plt(const Packet4f& a, Packet4f& b) { return _mm_cmplt_ps(a, b); }
 | |
| Packet2d plt(const Packet2d& a, Packet2d& b) { return _mm_cmplt_pd(a, b); }
 | |
| 
 | |
| Packet4f pandnot(const Packet4f& a, Packet4f& b) { return _mm_andnot_ps(a, b); }
 | |
| Packet2d pandnot(const Packet2d& a, Packet2d& b) { return _mm_andnot_pd(a, b); }
 | |
| #endif
 | |
| }
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| EIGEN_DONT_INLINE typename T::Scalar pblueNorm(const T& v) {
 | |
| #ifndef EIGEN_VECTORIZE
 | |
|   return v.blueNorm();
 | |
| #else
 | |
|   typedef typename T::Scalar Scalar;
 | |
| 
 | |
|   static int nmax = 0;
 | |
|   static Scalar b1, b2, s1m, s2m, overfl, rbig, relerr;
 | |
|   int n;
 | |
| 
 | |
|   if (nmax <= 0) {
 | |
|     int nbig, ibeta, it, iemin, iemax, iexp;
 | |
|     Scalar abig, eps;
 | |
| 
 | |
|     nbig = std::numeric_limits<int>::max();      // largest integer
 | |
|     ibeta = std::numeric_limits<Scalar>::radix;  // NumTraits<Scalar>::Base;
 | |
|                                                  // // base for floating-point
 | |
|                                                  // numbers
 | |
|     it = std::numeric_limits<Scalar>::digits;    // NumTraits<Scalar>::Mantissa;
 | |
|     // // number of base-beta digits
 | |
|     // in mantissa
 | |
|     iemin = std::numeric_limits<Scalar>::min_exponent;  // minimum exponent
 | |
|     iemax = std::numeric_limits<Scalar>::max_exponent;  // maximum exponent
 | |
|     rbig = std::numeric_limits<Scalar>::max();  // largest floating-point number
 | |
| 
 | |
|     // Check the basic machine-dependent constants.
 | |
|     if (iemin > 1 - 2 * it || 1 + it > iemax || (it == 2 && ibeta < 5) ||
 | |
|         (it <= 4 && ibeta <= 3) || it < 2) {
 | |
|       eigen_assert(false &&
 | |
|                    "the algorithm cannot be guaranteed on this computer");
 | |
|     }
 | |
|     iexp = -((1 - iemin) / 2);
 | |
|     b1 = std::pow(ibeta, iexp);  // lower boundary of midrange
 | |
|     iexp = (iemax + 1 - it) / 2;
 | |
|     b2 = std::pow(ibeta, iexp);  // upper boundary of midrange
 | |
| 
 | |
|     iexp = (2 - iemin) / 2;
 | |
|     s1m = std::pow(ibeta, iexp);  // scaling factor for lower range
 | |
|     iexp = -((iemax + it) / 2);
 | |
|     s2m = std::pow(ibeta, iexp);  // scaling factor for upper range
 | |
| 
 | |
|     overfl = rbig * s2m;  // overflow boundary for abig
 | |
|     eps = std::pow(ibeta, 1 - it);
 | |
|     relerr = std::sqrt(eps);  // tolerance for neglecting asml
 | |
|     abig = 1.0 / eps - 1.0;
 | |
|     if (Scalar(nbig) > abig)
 | |
|       nmax = abig;  // largest safe n
 | |
|     else
 | |
|       nmax = nbig;
 | |
|   }
 | |
| 
 | |
|   typedef typename internal::packet_traits<Scalar>::type Packet;
 | |
|   const int ps = internal::packet_traits<Scalar>::size;
 | |
|   Packet pasml = internal::pset1<Packet>(Scalar(0));
 | |
|   Packet pamed = internal::pset1<Packet>(Scalar(0));
 | |
|   Packet pabig = internal::pset1<Packet>(Scalar(0));
 | |
|   Packet ps2m = internal::pset1<Packet>(s2m);
 | |
|   Packet ps1m = internal::pset1<Packet>(s1m);
 | |
|   Packet pb2 = internal::pset1<Packet>(b2);
 | |
|   Packet pb1 = internal::pset1<Packet>(b1);
 | |
|   for (int j = 0; j < v.size(); j += ps) {
 | |
|     Packet ax = internal::pabs(v.template packet<Aligned>(j));
 | |
|     Packet ax_s2m = internal::pmul(ax, ps2m);
 | |
|     Packet ax_s1m = internal::pmul(ax, ps1m);
 | |
|     Packet maskBig = internal::plt(pb2, ax);
 | |
|     Packet maskSml = internal::plt(ax, pb1);
 | |
| 
 | |
|     //     Packet maskMed = internal::pand(maskSml,maskBig);
 | |
|     //     Packet scale = internal::pset1(Scalar(0));
 | |
|     //     scale = internal::por(scale, internal::pand(maskBig,ps2m));
 | |
|     //     scale = internal::por(scale, internal::pand(maskSml,ps1m));
 | |
|     //     scale = internal::por(scale,
 | |
|     //     internal::pandnot(internal::pset1(Scalar(1)),maskMed));
 | |
|     //     ax = internal::pmul(ax,scale);
 | |
|     //     ax = internal::pmul(ax,ax);
 | |
|     //     pabig = internal::padd(pabig, internal::pand(maskBig, ax));
 | |
|     //     pasml = internal::padd(pasml, internal::pand(maskSml, ax));
 | |
|     //     pamed = internal::padd(pamed, internal::pandnot(ax,maskMed));
 | |
| 
 | |
|     pabig = internal::padd(
 | |
|         pabig, internal::pand(maskBig, internal::pmul(ax_s2m, ax_s2m)));
 | |
|     pasml = internal::padd(
 | |
|         pasml, internal::pand(maskSml, internal::pmul(ax_s1m, ax_s1m)));
 | |
|     pamed = internal::padd(pamed,
 | |
|                            internal::pandnot(internal::pmul(ax, ax),
 | |
|                                              internal::pand(maskSml, maskBig)));
 | |
|   }
 | |
|   Scalar abig = internal::predux(pabig);
 | |
|   Scalar asml = internal::predux(pasml);
 | |
|   Scalar amed = internal::predux(pamed);
 | |
|   if (abig > Scalar(0)) {
 | |
|     abig = std::sqrt(abig);
 | |
|     if (abig > overfl) {
 | |
|       eigen_assert(false && "overflow");
 | |
|       return rbig;
 | |
|     }
 | |
|     if (amed > Scalar(0)) {
 | |
|       abig = abig / s2m;
 | |
|       amed = std::sqrt(amed);
 | |
|     } else {
 | |
|       return abig / s2m;
 | |
|     }
 | |
| 
 | |
|   } else if (asml > Scalar(0)) {
 | |
|     if (amed > Scalar(0)) {
 | |
|       abig = std::sqrt(amed);
 | |
|       amed = std::sqrt(asml) / s1m;
 | |
|     } else {
 | |
|       return std::sqrt(asml) / s1m;
 | |
|     }
 | |
|   } else {
 | |
|     return std::sqrt(amed);
 | |
|   }
 | |
|   asml = std::min(abig, amed);
 | |
|   abig = std::max(abig, amed);
 | |
|   if (asml <= abig * relerr)
 | |
|     return abig;
 | |
|   else
 | |
|     return abig * std::sqrt(Scalar(1) + numext::abs2(asml / abig));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #define BENCH_PERF(NRM)                                                      \
 | |
|   {                                                                          \
 | |
|     float af = 0;                                                            \
 | |
|     double ad = 0;                                                           \
 | |
|     std::complex<float> ac = 0;                                              \
 | |
|     Eigen::BenchTimer tf, td, tcf;                                           \
 | |
|     tf.reset();                                                              \
 | |
|     td.reset();                                                              \
 | |
|     tcf.reset();                                                             \
 | |
|     for (int k = 0; k < tries; ++k) {                                        \
 | |
|       tf.start();                                                            \
 | |
|       for (int i = 0; i < iters; ++i) {                                      \
 | |
|         af += NRM(vf);                                                       \
 | |
|       }                                                                      \
 | |
|       tf.stop();                                                             \
 | |
|     }                                                                        \
 | |
|     for (int k = 0; k < tries; ++k) {                                        \
 | |
|       td.start();                                                            \
 | |
|       for (int i = 0; i < iters; ++i) {                                      \
 | |
|         ad += NRM(vd);                                                       \
 | |
|       }                                                                      \
 | |
|       td.stop();                                                             \
 | |
|     }                                                                        \
 | |
|     /*for (int k=0; k<std::max(1,tries/3); ++k) {                            \
 | |
|       tcf.start();                                                           \
 | |
|       for (int i=0; i<iters; ++i) { ac += NRM(vcf); }                        \
 | |
|       tcf.stop();                                                            \
 | |
|     } */                                                                     \
 | |
|     std::cout << #NRM << "\t" << tf.value() << "   " << td.value() << "    " \
 | |
|               << tcf.value() << "\n";                                        \
 | |
|   }
 | |
| 
 | |
| void check_accuracy(double basef, double based, int s) {
 | |
|   double yf = basef * std::abs(internal::random<double>());
 | |
|   double yd = based * std::abs(internal::random<double>());
 | |
|   VectorXf vf = VectorXf::Ones(s) * yf;
 | |
|   VectorXd vd = VectorXd::Ones(s) * yd;
 | |
| 
 | |
|   std::cout << "reference\t" << std::sqrt(double(s)) * yf << "\t"
 | |
|             << std::sqrt(double(s)) * yd << "\n";
 | |
|   std::cout << "sqsumNorm\t" << sqsumNorm(vf) << "\t" << sqsumNorm(vd) << "\n";
 | |
|   std::cout << "hypotNorm\t" << hypotNorm(vf) << "\t" << hypotNorm(vd) << "\n";
 | |
|   std::cout << "blueNorm\t" << blueNorm(vf) << "\t" << blueNorm(vd) << "\n";
 | |
|   std::cout << "pblueNorm\t" << pblueNorm(vf) << "\t" << pblueNorm(vd) << "\n";
 | |
|   std::cout << "lapackNorm\t" << lapackNorm(vf) << "\t" << lapackNorm(vd)
 | |
|             << "\n";
 | |
|   std::cout << "twopassNorm\t" << twopassNorm(vf) << "\t" << twopassNorm(vd)
 | |
|             << "\n";
 | |
|   std::cout << "bl2passNorm\t" << bl2passNorm(vf) << "\t" << bl2passNorm(vd)
 | |
|             << "\n";
 | |
| }
 | |
| 
 | |
| void check_accuracy_var(int ef0, int ef1, int ed0, int ed1, int s) {
 | |
|   VectorXf vf(s);
 | |
|   VectorXd vd(s);
 | |
|   for (int i = 0; i < s; ++i) {
 | |
|     vf[i] = std::abs(internal::random<double>()) *
 | |
|             std::pow(double(10), internal::random<int>(ef0, ef1));
 | |
|     vd[i] = std::abs(internal::random<double>()) *
 | |
|             std::pow(double(10), internal::random<int>(ed0, ed1));
 | |
|   }
 | |
| 
 | |
|   // std::cout << "reference\t" << internal::sqrt(double(s))*yf << "\t" <<
 | |
|   // internal::sqrt(double(s))*yd << "\n";
 | |
|   std::cout << "sqsumNorm\t" << sqsumNorm(vf) << "\t" << sqsumNorm(vd) << "\t"
 | |
|             << sqsumNorm(vf.cast<long double>()) << "\t"
 | |
|             << sqsumNorm(vd.cast<long double>()) << "\n";
 | |
|   std::cout << "hypotNorm\t" << hypotNorm(vf) << "\t" << hypotNorm(vd) << "\t"
 | |
|             << hypotNorm(vf.cast<long double>()) << "\t"
 | |
|             << hypotNorm(vd.cast<long double>()) << "\n";
 | |
|   std::cout << "blueNorm\t" << blueNorm(vf) << "\t" << blueNorm(vd) << "\t"
 | |
|             << blueNorm(vf.cast<long double>()) << "\t"
 | |
|             << blueNorm(vd.cast<long double>()) << "\n";
 | |
|   std::cout << "pblueNorm\t" << pblueNorm(vf) << "\t" << pblueNorm(vd) << "\t"
 | |
|             << blueNorm(vf.cast<long double>()) << "\t"
 | |
|             << blueNorm(vd.cast<long double>()) << "\n";
 | |
|   std::cout << "lapackNorm\t" << lapackNorm(vf) << "\t" << lapackNorm(vd)
 | |
|             << "\t" << lapackNorm(vf.cast<long double>()) << "\t"
 | |
|             << lapackNorm(vd.cast<long double>()) << "\n";
 | |
|   std::cout << "twopassNorm\t" << twopassNorm(vf) << "\t" << twopassNorm(vd)
 | |
|             << "\t" << twopassNorm(vf.cast<long double>()) << "\t"
 | |
|             << twopassNorm(vd.cast<long double>()) << "\n";
 | |
|   //   std::cout << "bl2passNorm\t" << bl2passNorm(vf) << "\t" <<
 | |
|   //   bl2passNorm(vd) << "\t" << bl2passNorm(vf.cast<long double>()) << "\t" <<
 | |
|   //   bl2passNorm(vd.cast<long double>()) << "\n";
 | |
| }
 | |
| 
 | |
| int main(int argc, char** argv) {
 | |
|   int tries = 10;
 | |
|   int iters = 100000;
 | |
|   double y = 1.1345743233455785456788e12 * internal::random<double>();
 | |
|   VectorXf v = VectorXf::Ones(1024) * y;
 | |
| 
 | |
|   // return 0;
 | |
|   int s = 10000;
 | |
|   double basef_ok = 1.1345743233455785456788e15;
 | |
|   double based_ok = 1.1345743233455785456788e95;
 | |
| 
 | |
|   double basef_under = 1.1345743233455785456788e-27;
 | |
|   double based_under = 1.1345743233455785456788e-303;
 | |
| 
 | |
|   double basef_over = 1.1345743233455785456788e+27;
 | |
|   double based_over = 1.1345743233455785456788e+302;
 | |
| 
 | |
|   std::cout.precision(20);
 | |
| 
 | |
|   std::cerr << "\nNo under/overflow:\n";
 | |
|   check_accuracy(basef_ok, based_ok, s);
 | |
| 
 | |
|   std::cerr << "\nUnderflow:\n";
 | |
|   check_accuracy(basef_under, based_under, s);
 | |
| 
 | |
|   std::cerr << "\nOverflow:\n";
 | |
|   check_accuracy(basef_over, based_over, s);
 | |
| 
 | |
|   std::cerr << "\nVarying (over):\n";
 | |
|   for (int k = 0; k < 1; ++k) {
 | |
|     check_accuracy_var(20, 27, 190, 302, s);
 | |
|     std::cout << "\n";
 | |
|   }
 | |
| 
 | |
|   std::cerr << "\nVarying (under):\n";
 | |
|   for (int k = 0; k < 1; ++k) {
 | |
|     check_accuracy_var(-27, 20, -302, -190, s);
 | |
|     std::cout << "\n";
 | |
|   }
 | |
| 
 | |
|   y = 1;
 | |
|   std::cout.precision(4);
 | |
|   int s1 = 1024 * 1024 * 32;
 | |
|   std::cerr << "Performance (out of cache, " << s1 << "):\n";
 | |
|   {
 | |
|     int iters = 1;
 | |
|     VectorXf vf = VectorXf::Random(s1) * y;
 | |
|     VectorXd vd = VectorXd::Random(s1) * y;
 | |
|     VectorXcf vcf = VectorXcf::Random(s1) * y;
 | |
|     BENCH_PERF(sqsumNorm);
 | |
|     BENCH_PERF(stableNorm);
 | |
|     BENCH_PERF(blueNorm);
 | |
|     BENCH_PERF(pblueNorm);
 | |
|     BENCH_PERF(lapackNorm);
 | |
|     BENCH_PERF(hypotNorm);
 | |
|     BENCH_PERF(twopassNorm);
 | |
|     BENCH_PERF(bl2passNorm);
 | |
|   }
 | |
| 
 | |
|   std::cerr << "\nPerformance (in cache, " << 512 << "):\n";
 | |
|   {
 | |
|     int iters = 100000;
 | |
|     VectorXf vf = VectorXf::Random(512) * y;
 | |
|     VectorXd vd = VectorXd::Random(512) * y;
 | |
|     VectorXcf vcf = VectorXcf::Random(512) * y;
 | |
|     BENCH_PERF(sqsumNorm);
 | |
|     BENCH_PERF(stableNorm);
 | |
|     BENCH_PERF(blueNorm);
 | |
|     BENCH_PERF(pblueNorm);
 | |
|     BENCH_PERF(lapackNorm);
 | |
|     BENCH_PERF(hypotNorm);
 | |
|     BENCH_PERF(twopassNorm);
 | |
|     BENCH_PERF(bl2passNorm);
 | |
|   }
 | |
| }
 | 
